Using the ecosystem services framework to link research and policy-making: a case study on Lake Tai, China

Yuan Pan, Stuart Marshall, Lorraine Maltby

Lake Tai (Taihu)

- 3rd largest freshwater lake in China
- Surface area: 2338 km²
- Average depth: 1.9 m
- One of the wealthiest and most industrialised regions in China

Multiple Stressors

Stressors	Causes	
Chemical pollution	 Industrial chemical factories Municipal wastewater Agricultural & aquaculture 	
Wetland reclamation	Rising population & urbanisationIncreasing agriculture	
Water shortage during dry season	Shallow lakeUnsustainable water abstraction	
Decrease in lake connectivity	Flood control projects	

Eutrophication: temporal changes

Figure: Changes in the trophic state index of Lake Tai from 1960-2013 (<30-40: oligotrophic, 40-50: mesotrophic, 50-70: eutrophic).

Ecosystem Services

"Benefits that we receive from ecosystems"

- Links human society to ecosystems
- Ensures what we protect is valued by stakeholders

Ecosystem services of Lake Tai

Provisioning	Regulating	Cultural
Freshwater	Flood Regulation	Tourism
Food (fish & crabs)		Religious sites
Food (aquatic plants)	Water filtration	Origin of Wu-Yue culture
Taihu pearls	Micro-climate	Recreational values
	regulation	
Taihu rocks		

Protection Goals

1) What do we want to protect?

2) Where to protect it?

3) Over what time period?

- Chemical legislations have general protection goals
- **Specific protection goals** are vital for effective chemical risk management
- One approach is to identify ecosystem services that are valued by society

Varying ecosystem values

- Which services are required from an ecosystem?
- Who are the stakeholders?
- Different sections of society may not have the same ecosystem values
- This should be considered during the establishment of protection goals

Objectives

- Do different sections of society prioritize different ecosystem services?
- Which factors affect the prioritization of ecosystem services?
- Which ecological components provide the prioritized ecosystem services?

Study area

Methods

500 questionnaires across 4 cities

Questionnaire:

- Prioritization of ecosystem services
 - 1) Food 3) Flood regulation
 - 2) Water 4) Microclimate regulation

5) Recreation6) Cultural heritage

- Used "willing to pay or not" as a prioritization tool
- Asked whether respondents are willing to pay or not for their prioritised service
- Asked whether respondents are willing to pay or not to improve the overall quality of Lake Tai

Prioritised ecosystem services: across cities

Prioritised ecosystem service

Prioritised ecosystem services: rural and urban

Prioritised ecosystem service

Factors affecting prioritization of services

Ecological components linked to the provision of ecosystem services

Problems with chemical risk assessments

- Lacks ecological realism: do not assess ecosystem services
- Need to measure how changes in individuals affect ecosystem services
- Challenge: to go from what we measure traditionally to what people are valuing

Conclusion

- Different sections of society prioritise different ecosystem services
- By linking ecological components to the provision of prioritized services, standard test data can then be used to investigate the effects of chemical exposure on ecological components

Conclusion

What does this mean in terms of policy?

- Develop specific protection goals
- Improves ecological realism of chemical risk assessments
- Improves communication between scientists, the general public and policy-makers

But not everyone has the same ecosystem values. If so, whose values should count?

Acknowledgements

Supervisors:

- Professor Lorraine Maltby (Sheffield University, UK)
- Dr. Stuart Marshall (Unilever)

Funding bodies:

- Natural Environment Research Council (NERC), UK and Unilever CASE studentship
- Professor Yue Che (East China Normal University, Shanghai)
- My Chinese research assistants
- All my respondents

