Skin Allergy Risk Assessment Model (SARA): Importance of Chemical Reaction Mechanistic Classification

Nora Aptula

SARA Model (Reynolds et al., 2022)

 Unilever NGRA framework for Skin Allergy was designed to use a WoE based upon all available information, accommodate range of consumer product exposure scenarios and provide a quantitative point of departure and risk metric

The use-case of the SARA Model is to estimate:

1. ED₀₁, for all chemicals in the SARA database

2. probability that a consumer exposure to some chemical is 'low risk', conditional on the available data and the model

ED₀₁ HRIPT induction dose inducing sensitisation in 1% of the population

<u>Reynolds et al., 2022: Decision making in next generation risk assessment for</u> <u>skin allergy: Using historical clinical experience to benchmark risk</u>

<u>Gilmour et al., 2022: Next generation risk assessment for skin</u> Callergy: Decision making using new approach methodologies

Unilever

SARA 2.0 Model Development Overview

- An expanded database on which to estimate model parameters.
- Incorporation of new inputs:
 - In silico/expert inputs in the form of **reactivity** and **sensitiser/non-sensitiser** classifications.
 - The model now allows **human maximization test (HMT) studies**, in addition to human repeat insult patch test (HRIPT) studies.
 - Reactivity rate estimates from the **kinetic DPRA** can now be used as *in chemico* inputs.

Revised model outputs:

- The updated model can now provide a **probability that a chemical is a sensitiser** conditional on the data used.
- The SARA risk metric takes into the account the **probability that a chemical is a non**sensitiser.

Increased speed of operation:

• A "SARA-production" version of the model, an approximation of the full model from which potency estimates can be obtained much faster than previously.

Database Expansion

Unilever

curated sensitiser/non-sensitiser classification

*kDPRA input in log k_{max}

"Non-

classifications:

Database Expansion

Unilever

curated sensitiser/non-sensitiser classification

Physico-chemical Basis of Skin Sensitisation

 Skin sensitisation potential is dependent on electrophilic reactivity of the skin sensitiser or a derivative (produced by metabolism or oxidation)

Protein - chemical Reactions

Chemical -Electrophile

Several types of covalent reactions

+

SEAC

Sample Protein Reaction Mechanisms

no reactive groups

Aptula&Roberts. *Chem. Res. Toxicol.* 2006, **19**, 1097.

Mechanistic Classification of Skin Sensitisers

 Can be done by an expert – following the chemistry rules in this paper

Aptula, A.O. and Roberts, D.W. (2006) *Chem. Res. Tox.* 19(8), 1097-1105

- Rules from this paper have been coded and implemented into the Toxtree and Toolbox- free tools
- Unfortunately, the in silico tools are not 100% reliable. An expert eye is needed when making a final decision about the mechanistic domain
- "The overall concordance for Cramer classification between Toxtree and expert judgment is 83%, while the concordance between the Toolbox and expert judgment is 77%"

Bhatia et al, (2015) Reg Tox Pharm, 71,52

HPC – High Potency Category Chemicals

 Principles (structure-based) for identification of HPC chemicals were published by Roberts et al, 2015

Some examples of HPC rules:

- 1. Compounds used as protein derivatisation agents
- 2a. Quinones, di-imines and quinone-imines
- 5b. Anhydrides, i.e. compounds with the substructure –CO.O.CO–, should be assigned HPC if the log P value is greater than 1

• These were encoded and available in several in silico tools (e.g. TIMES, DEREK)

Roberts at al. Regulatory Toxicology and Pharmacology 72 (2015) 683–693

(12)

Determining expert reactivity classifications for SARA 2.0

Unilever

HPC – high potency chemical

(13)

Addition of reactivity classifications to inform SARA 2.0 priors

- Each chemical in the database now has a **reactivity classification**.
- Consensus reactivity classifications are based upon outputs of *in silico* tools and are expert curated.
- Possible classifications are "Reactive, HPC", "Reactive, non-HPC", "Non-reactive, but autooxidation possible" and "Non-reactive".
- The model learns an adaptive prior distribution for each of the four reactivity classifications.
- The reactivity prior distributions align well with the six potency classes defined by Gerberick et al., 2001.

Conclusions

- SARA 2.0 now incorporates additional input information, including reactivity classifications.
- The reactivity prior distributions align well with the six potency classes defined by Gerberick et al., 2001.
- Performance using reactivity classifications only, against benchmark exposure classifications, shows a higher average high/low risk classification rate with fewer incorrect classifications made, versus a QRA approach using dermal sensitisation thresholds.
- Publication to summarise updates to the model to follow.

Thank you

Gilmour et al 2022 case study scenarios re-visited

Uses of Mechanistic Classification

- It is used as an input into the SARA model
- Which Dermal Sensitisation Threshold (DST) will be appropriate to use
- It does NOT automatically mean that the chemical is a sensitiser, it means that it HAS the potential to bind to a protein by this specific mechanism

Evaluation Conclusions

- SARA 2.0 incorporates additional input information including reactivity classifications, HMT data and kinetic DPRA
- SARA 2.0 has an additional output, the likelihood that a chemical is a sensitiser
 - the uncertainty in sensitiser/non-sensitiser classification for a chemical is now factored into the calculation of the SARA 2.0 risk metric
- A SARA-production model has been developed which allows ED₀₁ estimates for novel datasets to be generated in a matter of seconds rather than hours
- A decision model is proposed to translate the risk metric into classifications of "low risk", "high risk" or "inconclusive".
- The case study scenarios published in Gilmour et al., 2022 were re-run using SARA 2.0 and the desired risk assessment conclusion was reached with higher confidence for all case studies
- SARA 2.0, with the proposed decision model, is more conservative than QRA for reactive chemicals and less conservative for non-reactive chemicals

SARA 2.0 outperforms SARA 1.0 on every metric considered

SARA-ICE Model Development

- Development of the SARA-ICE DA in collaboration with NICEATM to create a version of the model which meets the needs of wider industry for risk assessment and regulatory applications
- Key differentiating features include;
 - an expanded database (SARA 1.0 and ICE data) 0
 - removal of risk benchmarks 0

Unilever

- GHS Classification (binary / potency subcategories) Ο
- Significant progress made in feasibility study for OECD DASS TG 497
- Development of an open access user interface .
- EPA risk assessment community are early adopters of the approach for fragrance chemical risk assessment

Nitional Institute of Environmental Health Sciences	Chemical Environment		То	Substances	Glossary	Abo
Workplan Progress		Skin Allergy Risk Assessn	nent — SARA			
1. Assess regulatory needs/uses and define needed outputs for risk assessment – Complete		Geraniol Substance Run An	alysis			
 Publish case study results for cosmetics – Ungoing Propose general assessment framework for DAs for skin sensitisation quantitative risk assessment (including performance standards, different inputs & borderline chemicals) – Ongoing 		Geraniol	Expected	GUS Probabilities	GHS Classific	ations
 Assess model results against reference data and performance standards & conduct chemical case studies that cover a range of regulatory sectors to illustrate 'real-world' application – Ongoing 		DPRA	7.7e+03 ug/cm2	0.13	1	
 Incorporate DASS EG feedback on model output – Ongoing 		Assay Input	Expected ED01	Prob (GHS 1A)	GHS BIN	
 Develop a publicly available and user-friendly version of the model (to be housed in the Integrated Chemical Environment) – Ongoing 		KeratinoSens		0.67	1B	
 Publish chemical case studies that cover a range of regulatory sectors demonstrating use of SARA- ICE – Ongoing 		Assay Input		Prob (GHS 1B)	GHS _{SUB}	
 A proposal for draft addition to GL 497 endorsed by EG DASS via a written procedure (Q1 2024), submission of a request to WNT for discussion and endorsement for draft addition (April 2024). 		Assay Input		Prob (NC)	GHS BORDER	

Database

Aim to expand the core dataset underpinning the model using data in the ICE database (relaxing the constraint that chemicals be limited to cosmetic ingredients).

Risk benchmarking

Drop the risk benchmarking component of the model - the current set of benchmarks are limited to use of consumer goods. Use the model for human potency estimation for quantitative risk assessment.

About

Figure (a) Example estimate of ED₀₁ distribution with overlay of GHS subcategories 1A, 1B and NC defined thresholds, (b) probability of each GHS subcategory from ED_{n1} distribution

Overview SARA-ICE

	SARA prototype (Reynolds et al. 2019)	SARA 1.0 (Reynolds et al. 2022)	SARA 2.0	SARA-ICE
Database	30 chemicals	81 chemicals	428 chemicals	434 Chemicals, >4000 studies
			LLNA, KeratinoSens, USENS, hCLAT, DPRA, kDPRA (log kmax), Reactivity (NR, RAut, R, HPC), Human data (HRIPT & HMT)	
Assay Inputs	HRIPT, LLNA, DPRA, KeratinoSens, hCLAT, USENS	HRIPT, LLNA, DPRA, KeratinoSens, hCLAT, USENS	Binary + confidence chemical exposure risk	v1 + kDPRA (log kmax), Human max. test (HMT), cytotoxicity concentrations from KeratinoSens, hCLAT, USENS
Probability of Sensitiser	Assumes sensitiser	Assumes sensitiser	ED01 (1% sensitising dose for a HRIPT exposure scenario)	+ GHS NC / 1
Production Model	N/A	N/A	S/NS	Faster production model (to be hosted on ICE)
Probability of GHS Cat.	N/A	N/A	Probability exposure is low risk/probability exposure is high risk. Low risk/high risk/inconclusive calls	Probability of GHS Cat., *binary or 1A, 1B, NC
Risk Model	N/A	Probability exposure is low risk	Faster, approximated production model	N/A

SARA-ICE DA: Skin Allergy Risk Assessment - Integrated Chemical Environment Defined Approach

16 / 50, 32%

7 / 47, 15%

22

SARA 2.0 performance against benchmark exposure classifications - reactivity information only

64%

70%

15 / 65, 23%

18 / 65, 28%

14 / 16, 88%

14 / 16, 88%

Unilever

QRA DST
SARA Reactivity
information only

20 / 49, 41%

26 / 49, 53%