
USING AUTOMATED MACHINE LEARNING FOR THE 

PREDICTION OF DEVELOPMENTAL AND REPRODUCTIVE TOXICITY 

• Developmental and reproductive toxicity (DART) is an important 

regulatory endpoint in health hazard assessment. 

• Need to comply with the regulatory ban on animal testing for finished 

cosmetic products and cosmetic ingredients 

• Important to develop non-animal testing alternative approaches such as 

in silico methods to assess the potential DART toxicities of chemicals.  

• Limited data in the literature, coupled with the complex nature of the 

DART endpoint makes it a challenging endpoint to study. 

• Machine learning models in an automated machine learning (AutoML) 

process have been used to investigate DART in this work. 

• Data was compiled from 11 different sources (includes existing data in the literature such as from datasets used to build 

models) covering a range of endpoints in DART. The toxicity value for each compound was recorded for each source. 

• This gives the largest known database with 3622 compounds (1900 positives, 1722 negatives) for the general prediction 

of DART. This dataset will henceforth be referred to as the DART dataset. 

• An AutoML process (AutoGluon package) was used to develop ML models on this database.  

• Morgan fingerprints with 2048 bits and radius 2 were used as the features for model input. 

• AutoML models were benchmarked against literature results. 

• Better accuracy than all results so far on the benchmark dataset. 

• AutoML process can subsequently be used for the DART dataset. 

Model SE (%) SP (%) Accuracy (%) MCC 

Jiang et al. 2019 78.5 88.1 83.6 - 

Feng et al. 2021 77.3 90.7 84.4 - 

ExtraTreesGini_BAG_L1 80.6 ± 2.0 88.8 ± 1.2 84.8 ± 1.5 
0.697 ± 
0.030 

• 24 ML models with a variety of algorithms were 

trained using the DART dataset compiled in this 

study. 

• Top three models for predicting DART are shown. 

• Results are reported as an average across five 

runs. 

• Consistent results with low standard deviations 

across all five runs for all 24 models. 

• Reasonable results given complexity of DART and 

lack of quality data. 

Model SE (%) SP (%) Accuracy (%) MCC 

ExtraTreesGini_BAG_L1 76.7 ± 1.8 70.6 ± 3.0 73.9 ± 1.8 0.475 ± 0.035 

ExtraTreesGini_BAG_L2 75.1 ± 2.2 72.4 ± 2.7 73.8 ± 1.7 0.474 ± 0.034 

RandomForest-
Gini_BAG_L2 74.8 ± 2.2 72.5 ± 3.2 73.7 ± 1.8 0.473 ± 0.035 

• A screening tool requires high sensitivity (SE). 

• A confirmation tool requires high specificity (SP). 

• Model performance is stable across both thresholds. 

• Further improvements unlikely given consistent 

performance of all models so far. 

• Model performance ultimately limited by current data 

quantity and quality. 

Threshold (for positives) 
for overall toxicity  SE (%) SP (%) Accuracy (%) MCC 

At least 1 positive 76.7 ± 1.8 70.6 ± 3.0 73.9 ± 1.8 
0.475 ± 
0.035 

Positives more 

than negatives 
68.0 ± 2.7 80.0 ± 1.6 74.5 ± 0.8 

0.485 ± 
0.019 

DATA VISUALISATION 

 

We thank Unilever for funding this study. 

• A Principal Component analysis (PCA) plot was constructed for 

the DART database. 

• Easier to find similar chemicals for reproductive toxicity (main 

clusters circled in red) (Feng et al.) as compared to 

developmental toxicity. 

• Plot matches expectations on complexity of developmental and 

reproductive aspects of DART. 

• Areas with low number of data points in the plot highlights the 

need for more experimental data. 
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1.  About 3600 compounds for the general prediction of 

DART has been compiled. 

 ACKNOWLEDGEMENTS 

Marcus Wang (mwhw3@cam.ac.uk) 
A Centre for Molecular Informatics, Yusuf Hamied 

Department of Chemistry, University of Cambridge, 

Lensfield Road, Cambridge CB2 1EW, United Kingdom  
B Unilever Safety and Environmental Assurance Centre, 

Colworth Science Park, Sharnbrook, Bedfordshire MK44 

1LQ, United Kingdom  

 CONTACT DETAILS 

 

2.  The best-performing machine learning model has been 

developed for predicting the general DART endpoint. 
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 Best accuracy of  74% 
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