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Background

 Allergic skin sensitisation manifests clinically as allergic contact dermatitis (ACD)
* ACD affects ~20% of European population’

* Individual variation in sensitisation not fully explained?

* We hypothesise that a state of oxidative stress could affect sensitiser potency

* Aim to investigate the effects of reactive oxygen species (ROS) induced oxidative

stress on proteomic action of sensitiser 2,4-dinitrochlorobenzene (DNCB) in vitro

1.  Peiser, M. et al. (2012) Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Cellular and Molecular Life Sciences. 69(5): 763-781.

2. Gilmour, N. et al. (2019) Skin sensitization: Uncertainties, challenges, and opportunities for improved risk assessment. Contact Dermatitis. 80(3): 195-200.
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Allergic skin sensitisation
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Vehicle only
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H,O, pre-exposure decreases Glutathione (GSH) availability,
increases GSH-s-transferase omega (GST-w) expression
following DNCB exposure
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H,O, pre-exposure increases
catalase activity

Catalase activity
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H,O, pre-exposure, DNCB
exposure upregulate
proteins in key oxidative
stress pathways compared
to DNCB-only exposure

Whole proteome analysis of HaCaT
samples

MS data processed in R by gene set
enrichment analysis, Kegg pathway
analysis
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H,O, pre-exposure, DNCB exposure upregulate proteins in key
oxidative stress pathways compared to DNCB-only exposure

Kegg pathway analysis in R

Protein expression in HaCaTs pre-
exposed to H,0,, exposed to DNCB
versus HaCaTs exposed to DNCB only
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Green proteins downregulated
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pathways

| PENTOSE PHORPHATE PATHWAY |

D-Glueogarinate

Pentose and gluwcwonate | 4319
intercoryersions —\l

Cralactose metaboliste

FECETL T
10 1

11.147 |
D-Glucono- 12998
£ 1134 11 Slactome ———— D-Glpeprate [42139 a 1255 %7 (Hlygerate 2P
o= — 131117} > YETRT] D o1 12189 )'|2?1165'—.( )
‘ P-D-Glucose L= = 2 Dbl D-Glycer- [y 275 | Glyverate
| k S-deoiyD-glue onate dehyrde |
| 2 Dehyrlzo Ent}l:ner—]:budomff |
— - tha:
‘ 1113011159 D-glufonate 111215 pathorny i
T D-Glucose (1159 | 1.1.52 [27.113] [27112] [27.045)[27007] Pyrwate(:; ——————————— —t»( Ciyoolysis
‘ 2-Dehyrlro- )
‘ D-glm%drfa?w-éP (1114 |
‘ |
HEFD

! D-Glymer- |
‘ f-D-Glucose- 6P 1.1.149 = " ¥ 41214 Jaldeliple 3P [ 1219 J
k _________ 111363111388 21131 o 42112 @ _____ |

1. 1] D-Glucono- D-gluconate-6F 2 Dehyriro- 41255 12190) Chrerate-3F |
| 1,5-lactome -6F FedeoyD-glus onate -6F Il |

L.
o [L11a4][1r3g] PEYES) '
o-D-Clucose-6F —Gala o tabiolis
________ . . T1a5 . ctose metabohisrn
D-Glucosaraitiate x itate -
(extras Inlar] D-Glucosaminate -6F

D-Fructoge- 6P
»

Witarain BA
()

Glyeolysis
27115
D-Bihase-5P 5427
2761
heptulose iy .
D (Hlyeraldehyrs 3P o prPP(_) 27423
| oeraldelizle 27114 ]
(_Sedoheptulose L oo Puine
(a125] (3D Slose. 5P |77 7 T metabolism
41289 D- 56 L
— — — f Pyrimidive
2-DeoxyD-rihose |
4124 @ 5427 @ e — o] Histidine

2-Deoxy-D-rhose-5F

Data on KEGG graph
Rendered by Pathview

2-Deoxy-D-rbose-1F

D-Ribose-l,SP2

'. ____ | Pentose and glucuronate
D-Rilose-5F intercormersons

[22.11] S 51
131 se4P
Dﬂ%llll 5 '
—_)

{_0-Rihose
[-Riboge-1F

271212271239

__ Glyoxslate a
53129 Rﬂoge 15P_D m&é’xhﬁﬁm metsbelism

University of
@Southampton




Summary

* Pre-exposure to hydrogen peroxide alters the effect of DNCB on the HaCaT proteome

* GSH/GSSG ratio is lower, indicating loss of available GSH

* Superoxide dismutase activity is lower despite increased protein expression, suggesting inhibitory

effect

* Protein expression in key oxidative stress pathways are increased

* These data indicate that a pre-existing state of ROS induced oxidative stress could

potentially increase risk of oxidative, electrophilic damage during sensitiser exposure
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Ongoing work

* Determining impact of H,0O, pre-exposure on DNCB haptenation of
HaCaT peptides

e Data analysis ongoing

* Development of a novel multiplexed proteomic approach to measure

protein carbonylation in HaCaTs following H,0,, DNCB exposure
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