Haptenation in HaCaT cells: comparison between DNCB and cinnamaldehyde

Maja Aleksic ERGECD Liverpool 2024

SKIN SENSITISATION OVERVIEW

Unilever

Imagery: NEXU Science Communication

Adverse Outcome Pathway for Skin Sensitisation

OECD (2014), The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins, OECD Series on Testing and Assessment, No. 168, OECD Publishing, Paris, <u>https://doi.org/10.1787/9789264221444-en</u>.

DNCB and cinnamaldehyde: Reactivity to protein nucleophiles and metabolism

Unilever

Method overview

Stable isotope labelling technique

Cell treatment overview

Parkinson *et al.* (2014) Stable Isotope Labelling Method for the Investigation of Protein Haptenation by Electrophilic Skin Sensitisers, Tox Sci, 142(1):239-49.

Parkinson *et al.* (2020), Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells, Toxicology 445, pp1-10; 152603

No change in protein expression throughout 48h experiment (DNCB)

No change in protein expression throughout 48h experiment (cinnamaldehyde)

The Dynamics of Haptenation by DNCB and cinnamaldehyde in HaCaT cells

Parkinson et al (2020), Toxicology 445, pp1-10; 152603

DNCB and cinnamaldehyde haptenation dynamics differ

Parkinson et al (2020), Toxicology 445, pp1-10; 152603

Typical DNCB haptenated proteins in HaCaT cells

Imagery: NEXU Science Communication

Cinnamaldehyde haptenated proteins in HaCaT cells

1h – Calcium transporting ATPase type 2C Schiff base @Lys490

4h – Serpin B5 Schiff base @Lys280

48h – K5 Schiff base @Tyr453

Conclusions, future work in research and potential use in RA

- Cinnamaldehyde shows different dynamic profile of haptenation in living HaCaT cells when compared to DNCB
 - No overall change in differential protein expression for non-cytotoxic concentrations of either chemical
 - Level of haptenation by cinnamaldehyde lower than DNCB
 - DNCB haptenates Cys residues no confirmed Cys adducts for cinnamaldehyde
 - DNCB haptenation peaks at 4h cinnamaldehyde haptenation barely detectable at all timepoints except for 48h

Phase II metabolism – concomitant and likely faster than haptenation

• Can simple assays be developed to be used in addition to reactivity assays and improve our prediction of sensitising potency?

Are all haptenation events reversible?

- To what extent and can this be measured?
- Assays do not have to be complicated to be useful in risk assessment!

Thank you:

SEAC, Unilever:

University of Southampton:

NexuCreative, Dublin:

Nicola Gilmour Ramya Rajagopal Sandrine Spriggs Richard Cubberley Gavin Maxwell Erika Parkinson Scott Adams Alex Lester Paul Skipp Eoin Winston Frank Munnelly

Thank you for your attention!

Questions?

maja.aleksic@unilever.com

