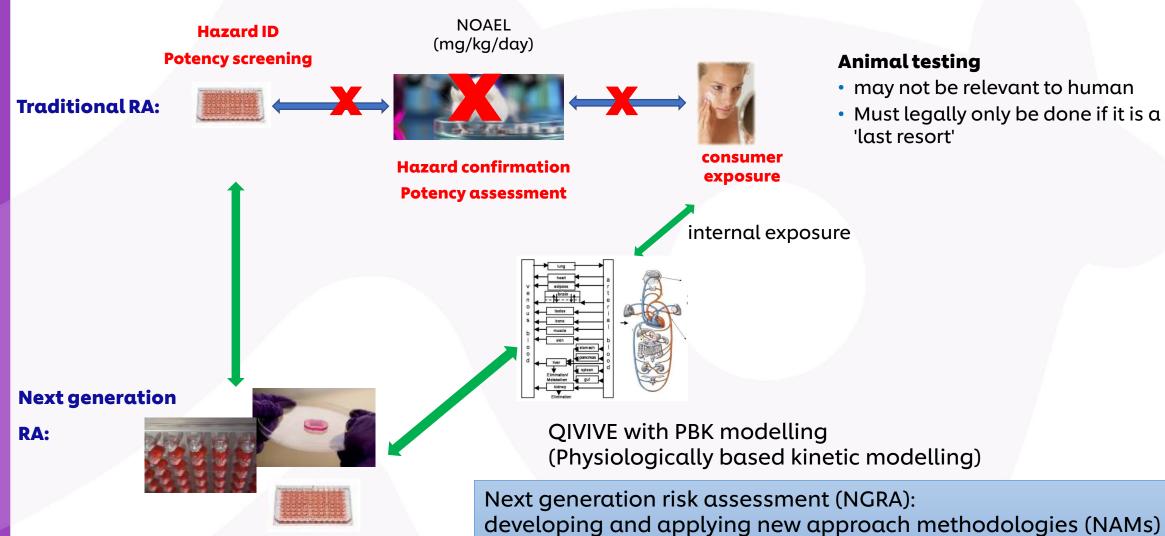
The Journey Towards Confidence ---

Bottom-Up PBK Modelling for Benzophenone 4

Hequn Li (Science Leader at Safety and Environmental Assurance Centre, Unilever)

Making safety decisions without generating data in animals



- Regulations ban animal testing of cosmetic products and their ingredients in over 40 countries
- Many of our consumers do not want to buy products associated with animal testing

At Unilever, our products must be safe

From traditional risk assessment to next generation risk assessment

without generating new animal data

bioactivity characterization

Benzophenone-4 (BP-4) case study: Objectives & Approach

 BP-4 is an UV-filter ingredient used in sunscreen cosmetics to prevent sunburns or photodegradation by inhibiting the infiltration of UV light. Unilever

- Background and Objective of the case study on BP-4:
 - Work with Cosmetic Europe Long Range Science Strategy (LRSS) on developing new approaches for safety assessment without using animals
 - Unilever led a few case studes within the LRSS, including BP4
 - Objective: to assess whether a tiered NGRA approach is sufficiently protective for making safety decisions

Focus of this presentation

PBK model development of BP-4 based on NAMs to make estimates of systemic exposure levels in NGRA

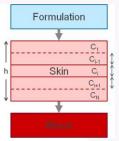
PBK modelling platform: GastroPlus v9.8

PBK Modelling Workflow and reporting template: compliant with OECD 2021 and WHO guidance

Exposure assessment: From topically applied dose to internal concentrations (e.g. C_{max} , AUC)

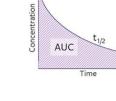
External dose

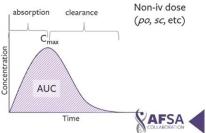
- Route of exposure
- Consumer use (Habits &Practices)
- Applied dose (external concentration)
- **Duration and frequency**



ADME parameters

Absorption Distribution Metabolism Elimination


- **Skin penetration**
- **Phys-chem properties**
- Hepatic clearance
- Fraction unbound
- Blood:plasma ratio



Kinetic profile of chemical

Physiologically-based kinetic (PBK) modelling - Internal concentration (plasma, urine, organ-level)

Images from: AFSA training module "Dosimetry (Internal Exposure)",2022

https://www.afsacollaboration.org/sciencex eve nt/dosimetry-internal-exposure-ivive/

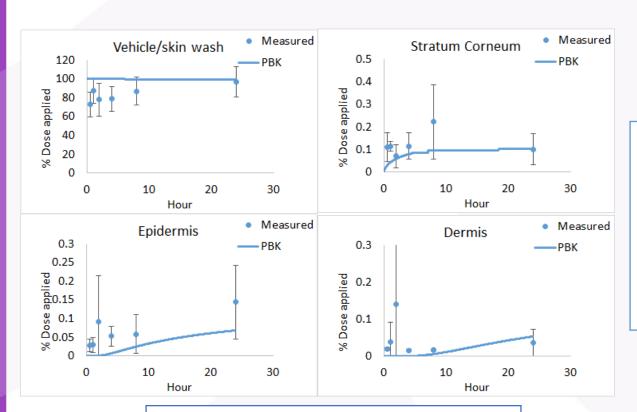
External applied dose

- •5% BP-4 in Sunscreen product
- •18g/day, two times, 9g/application, on body and face 17500cm² (Based on SCCS NoG)
- •To closely simulate the real-life use scenarios, it was assumed that European individuals
 - •use this sunscreen body lotion in the daytime
 - •each day apply the first dose (9g) at 9 am and the second dose (9g) at 2 pm
 - •following a meal (fed condition) and take a shower each morning at 7 am

Dosage Form	Dose [mg]	TD Dose Vol [ml]	Start [h]	End [h]	Physiology or .cat file	PBPK Physiology or .pbk file
TD: Liq Soln	450	9	0	22	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	5	22	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	24	46	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	29	46	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	48	70	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	53	70	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	72	94	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	77	94	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	96	118	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	101	118	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	120	142	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	125	142	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	144	166	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	149	166	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	168	190	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	173	190	Human - Physiological - Fed	european individual
TD: Liq Soln	450	9	192	214	Human - Physiological - Fed	european individual

PhysChem and ADME data generation and parameterisation

Strategy:


- We took a stepwise approach to data generation and refinement,
- using relevant and robust approaches for parameter determination
- support the reliability of input parameters and provide a sound biological basis for the model structure

	Value	Source
Molecular weight	308.3 g/mol	
Log P	1.28	ADMET predictor
рКα	acid 8.89, acid 0.5	ADMET predictor
Fraction unbound in plasma (f_{up})	0.0157	Measured
Blood: plasma ratio	0.6	Measured
Renal excretion	0.11L/h	GFR*Fup

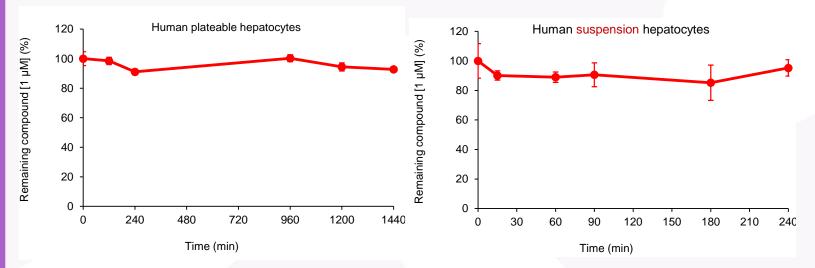
Dermal absorption with ex vivo skin pen data

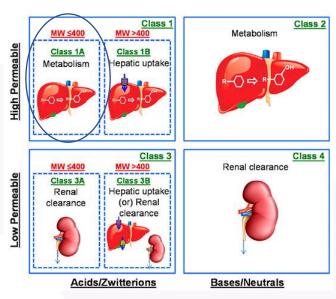
- Ex vivo skin penetration study designed according to Davis et al. 2011 meeting OECD and SCCS guidance
- BP-4 in relevant formulation (oil in water emulsion)
- Full time course data in skin layers and kinetic in receptor fluid

Results

- Very low skin penetration, therefore big variance of the data
- data used to fit important skin penetration parameters, i.e. diffusivity and partitioning parameters, in the TCAT module of GastroPlus

Hepatic clearance


In silico:


BP-4 was predicted to be mainly cleared via liver metabolism

In vitro data:

Primary human hepatocyte assay (using both suspension and plated cells):

Hepatic intrinsic clearance <2.5L/h (Below LOQ)

Initial ECCS (Extended Clearance Classification System):

Class 1A (Varma et al., 2015)

No metabolism of BP-4 seen in hepatocytes, conflicting with the ECCS Class 1A prediction.

Two hypotheses:

COSMETICS EUROPE LRSS

- 1) BP-4 is not a substrate of hepatic enzymes
- 2) BP-4 has low membrane permeability

Human liver S9 incubation: No metabolism of parent compound BP-4 is not a substrate of enzymes and has very low permeability High confidence that liver clearance can be neglected (set to 0 in PBK).

If BP-4 is not metabolised by the liver – what is the route of elimination? How is BP-4 taken up by the cells?

Back to problem formulation...

In silico predictions:

- BP-4 is an anion sulphonate
- Likely to be a substrate of Organic anion transporters (OATs)
- Renal clearance may be higher than GFR*Fup

In vitro 1:

Transporter studies in transfected kidney cells in two different formats

Results:

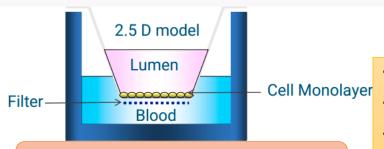
- Substrate of certain influx transporters and efflux transporters
- All these transporters are expressed in the kidney, related to either active secretion or reabsorption
- OAT-2, BCRP and MRP4 are expressed both in the liver

Transporters	Uptake of efflux?	Substrate?	
OAT1	Uptake	Yes	
OAT2	Uptake	Yes	
OAT3	Uptake	Yes	
OCT2	Uptake	No	
MATE1	Efflux	No	
MATE2-K	Efflux	No	
MRP2	Efflux	No	
MRP4	Efflux	Yes	
MDR1/Pg-p	Efflux	No	
BCRP	Efflux	Yes	
OAT4	Uptake	YES	
OATP1A2	Uptake	Borderline*	
OCTN1	Uptake	NO	
OCTN2	Uptake	NO	
URAT1	Uptake	NO	

Back to problem formulation...

Understanding chemical organ distribution and renal clearance

In silico predictions:


- BP-4 is an anion sulphonate
- Likely to be a substrate of Organic anion transporters (OATs)
- Renal clearance may be higher than GFR*Fup

In vitro 1:

Transporter studies in transfected kidney cells in two different assays (uptake assay and vesicular assay)

In vitro 2:

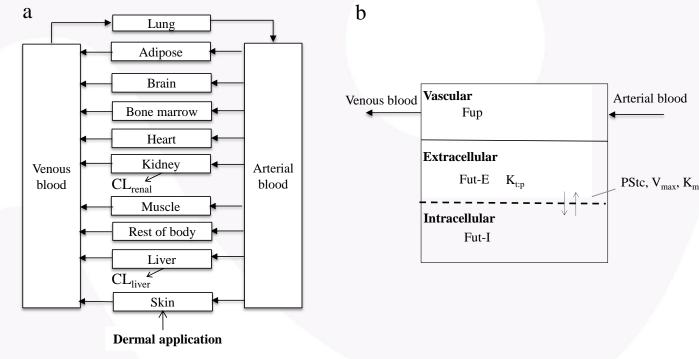
Investigate the bi-directional transport profile in kidney where all the active transporters are present and functional (aProximate™).

B-A →blood to urine →active secretion A-B → urine to blood →reabsorption

Human aProximate™ platform

- Primary proximal tubule cells (PTCs) derived from fresh human kidneys
- Cultured on semi-permeable filters to form a tight monolayer
- Retains a high degree of differentiation
- Endogenously express a variety of functional proteins and biomarkers

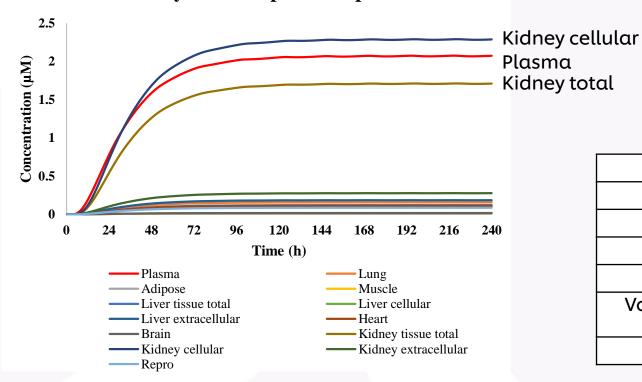
Results:


- Route of elimination in the kidney includes glomerular filtration, active tubular secretion and tubular reabsorption
- Transport in the proximal tubule cells is equally efficient in both directions
- However, donor variability has been observed that in 1 donor, active secretion was shown to be the main excretion route at biologically relevant concentrations

Updated PBK model in GastroPlus

- Set BP-4's distribution to each compartment to be modelled as permeability-limited
- Liver clearance set to 0
- Active transport in the liver was modelled by incorporating kinetic parameters (V_{max} , K_m , Protein expression) for the transporters (OAT-2, BCRP and MRP4).
- Biliary excretion not accounted for to be conservative

 GFR*Fup was used to calculate renal excretion of BP-4, accounting for filtration only to be conservative

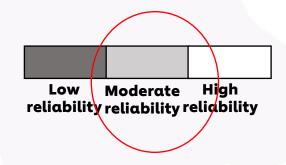


PBK modelling

for a female European 30 years-old 60 kg bodyweight

BP4-Systemic Exposure-repeat

PK parameter	Value
Bioavailability (%)	0.4
CL _{renal} (L/h)	0.11
Plasma C _{max} (µM)	2.08
AUC _{24h} (ug-h/mL)	1.94
Volumes of distribution at steady state (L)	8.577
t _{1/2} (h)	54.3


Human clinical PK data is not available for model verification

The output of the uncertainty and sensitivity analyses

A		Uncertainty				
		High	Medium	Low		
			vehicle: water partition coefficient			
	High		Stratum corneum water partition coefficient			
	Hi		Stratum corneum diffusivity			
ity			Fup			
itiv	шn		K _m OAT2			
Sensitivity Medium						
		V _{max} OAT2				
	Low		Epidermis diffusivity			
I			Blood: plasma ratio			

Plasma Cmax

C			Uncertainty				
			High	igh Medium			
*	y High			vehicle: water partition coefficient Stratum corneum water partition coefficient Stratum corneum diffusivity			
Sencitivity		Medium		K _m OAT2 V _{max} OAT2 Fup			
		Low		Blood: plasma ratio			

Kidney intracellular Cmax

According to WHO/OECD guidance

Probabilistic PBK modelling to account for population variability and parameter uncertainty

Population

Physiological characteristics

- 16-70 years old
- 40-85 kg
- 50% male and 50 % female
- European population

Parameter uncertainty analysis

- Set ranges (distributions) on values of influential parameters based on available information
- For uninfluential parameters, default distributions used

Note: a limitation of this approach is that parameter uncertainty and variability are considered together. Although separation of parameter uncertainty and variability is theoretically possible using hierarchical, population-based models, data are typically inadequate to achieve such a level or granularity


Monte Carlo simulation

Probabilistic PBK modelling + CMED model to account for population, parameter and model uncertainty

To account unknown-unknows e.g. model uncertainty

- C_{max} Error Distribution (CMED): A complementary approach to characterise PBK prediction uncertainty as published in Li
 et al. 2022 and Middleton et al. 2022.
- This model seeks to quantify the error distribution of estimates of plasma C_{max} by looking at the difference between PBK predictions of C_{max} and existing measured values in human clinicals for several exposure scenarios.
- This model can be used to estimate the distribution of the possible prediction errors for future chemical and exposure scenario.

Deterministic PBK model for female adult 60 kg	Distribution of C _{max} (probabilistic simulation+CMED) (µM)			
Plasma C _{max} point estimate	Median (95% interval)	95 th percentile		
2.1	1.3 (0.11, 15)	9.8		

Confidence level

WHO questions for assessing the level of confidence in the BP-4 PBK modeling

	level of confidence	level of confidence	
Model evaluation aspect	(towards the accuracy)	(towards the conservatism)	
Do the model structure and parameters have a reasonable biological basis ?	High	High	
How well does the PBK model reproduce the chemical-specific PK data under various experimental or exposure conditions?	Low	High	
How reliable is the PBK model with regard to its predictions of dose metrics relevant to risk assessment ?	High	High	

Conclusions

- ✓ The stepwise way of data generation and refinement, using relevant and robust approaches for parameter determination, support the reliability of input parameters and provide a sound biological basis for the model structure.
- ✓ Although human clinical data are not available for validation, the sensitivity and uncertainty analyses and the probabilistic modelling performed provided assurance that the predictions are fit for purpose and provides conservative estimates of human systemic exposure.

Acknowledgments

Matt Dett

Maria Baltazar

Sophie Cable

Nicky Hewitt

Beate Nicol

Joe Reynolds

Richard Cubberley

Sandrine Spriggs

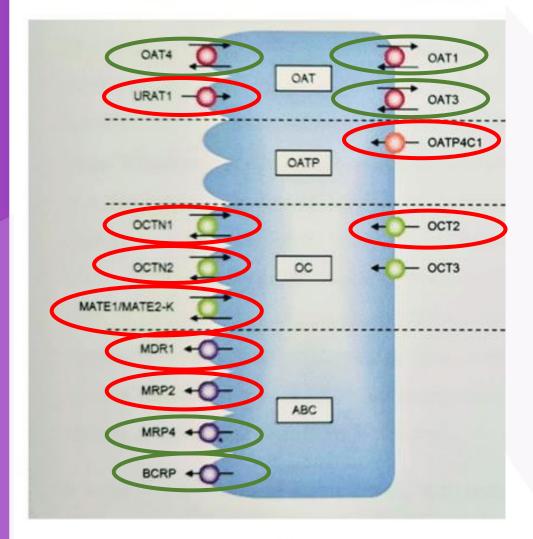
Ruth Pendlington

BP4 Consortium

Cosmetics Europe/LRSS Case study Leaders Team

Pharmacelsus

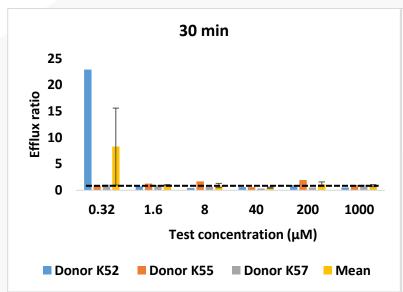
Eurofins

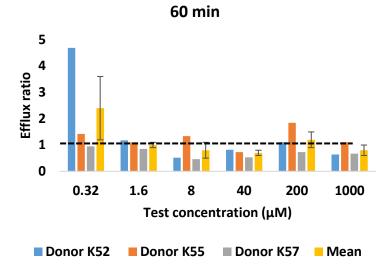

SOLVO

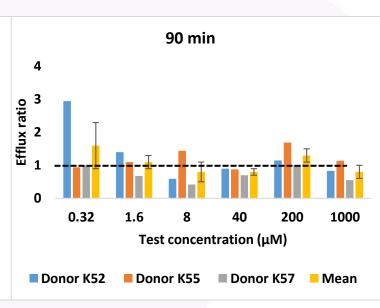
NewCells

Back up slides

Pharmaceuticals | Free Full-Text | Potential and Limits of Kidney Cells for Evaluation of Renal Excretion (mdpi.com)


Proteins relevant for renal drug transport in humans.


Human


OAT/Oat: Organic anion transporter; URAT: Urate transporter; OATP/Oatp: Organic anion transporting polypeptide; OC: Organic cation; OCTN/Octn: Organic cation transporter, novel; MATE/Mate: Multidrug and toxin extrusion protein; ABC: ATP-binding cassette; MDR/Mdr: Multidrug resistance; MRP/Mrp: Multidrug resistance-related protein; BCRP/Bcrp: Breast cancer resistance protein.

Efflux ratios

- Data is first presented as flux rate (pmol/cm²/h) in both directions (JA-B and JB-A)
- Efflux ratio= JB-A / JA-B
 - > 1.5-2.5: secreted molecules
 - > <1: reabsorbed molecules

Results:

- Route of elimination in the kidney includes glomerular filtration, active tubular secretion and tubular reabsorption
- Transport in the proximal tubule cells is equally efficient in both directions
- However, donor variability has been observed that in 1 donor, active secretion was shown to be the main excretion route at biologically relevant concentrations

Strategies in addressing uncertainty in PBK estimation

Deterministic PBK modelling

Point estimate values for input parameters

Model

Individual modelled (30 year-old 60 kg female, European)

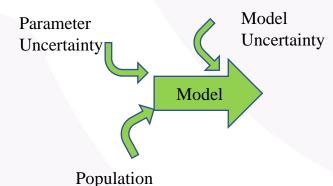
Predicted C_{max} based on different approaches characterising uncertainty

Probabilistic population PBK modelling

Parameter Uncertainty
('informed' distribution for the most sensitive parameters)

Model

Population
Variability


Variability

Population + parameter uncertainty + model uncertainty

Population + parameter uncertainty

C_{max}

Probabilistic population PBK+ CMED modelling

Distributions for parameters used in uncertainty analysis and probabilistic PBK simulations

Parameter	Mean	cv%		Distribution type	Lower Limit	Upper Limit
Fup	1.574	37.21	In vivo variability + In vitro standard deviation	lognormal	0.6095	4.0651
kidney volume	324.3	30	T. I.I. 2.C.	normal	32.4348	616.261
Liver volume	1416.1	30	Table 2 from Clewell and	normal	141.612	2690.63
liver plasma partition coefficient	0.09	20	Clewell III, 2008	lognormal	0.05209	0.15555
kidney plasma partition coefficient	0.135	20		lognormal	0.07795	0.23277
OAT2 expression in liver	3.50E-03	56.63	Literature review	lognormal	0.00091	0.01345
Km MRP4	1.5	25		lognormal	0.768	2.92969
Vmax MRP4	2.60E-03	25		lognormal	0.00133	0.00508
Km OAT2	4.5	25		lognormal	2.304	8.78906
vehicle: water partition coefficient	120	25	In vitro standard	lognormal	64.486	234.38
Stratum corneum water partition coefficient	1	70	deviation	lognormal	0.2035	4.913
Stratum corneum diffusivity	2.00E-11	70		lognormal	4.07E-12	9.83E-11
epidermis diffusivity	6.00E-10	130		lognormal	4.93E-11	7.30E-09

Table 2
Typical range of coefficients of variation for PBPK model input parameters

CV (%)	Distribution	
6–30	Truncated normal	
8-30	Truncated normal	
15-50	Truncated normal	
15-20	Truncated lognormal	
30-70	Truncated lognormal	
,	6–30 8–30 15–50 15–20	

To summarize BP-4's kinetic behavior in the human body:

- Overall, upon dermal absorption only a small amount of BP-4 enters systemic circulation, after which BP-4 remains unchanged due to negligible liver clearance.
- It has low tissue distribution due to low partitioning and limited passive diffusion of cell membranes (charged at physiological pH).
- It can be taken up into the kidney and then excreted to urine via active transport and can be reabsorbed back to into the bloodstream, however due to no preferred direction of movement glomerular filtration determines the overall renal excretion rate.
- BP-4 can also move into and then out of the liver cells.
- Successive doses result in accumulating concentrations of BP-4 in the body until a steady state is reached at around 100h when there is an equilibrium reached between the low absorption and low excretion into the urine.

