Assessment of the Confidence of a Novel In Silico **Classification Scheme for Environmental Toxicology**

Introduction

- Structural alerts predict toxicity prediction to identify hazard or group chemicals for read-across.[1]
- Approaches to develop structural alerts range from expert opinion to data-mining.
- A recent scheme using structural alerts allows for grouping for environmental toxicology. Click here for details.[2]
- Despite widespread use, there is no systematic approach to describe or evaluate the validity of structural alerts for toxicity prediction or to objectively measure uncertainty (and hence confidence).[3]

Characteristics of Low /
Moderate / High
Uncertainty Defined

Scheme to Eval	uate Structural Alerts	Case Study Using Uncertainty Criteria			
Ten Criteria for Uncertainty of Structural Alerts Identified	Characteristics of Low / Moderate / High Uncertainty Defined	Criteria Applied to	Uncertainty for Each Criterion		Uncertainty Scores Weighte
Criterion	Characteristics of Low Uncertainty	Uncertainty Relating to Alert for Aliphatic 1° Hydroxy Group	Assigned Uncertainty		Proposed Uncertainty Weighting
Purpose	Toxicity prediction or grouping	Grouping / confirm QSAR domain	Low	X	2
Structural Description	Unambiguous description	Well defined (1° aliphatic hydroxy)	Low	X	10
Structural Domain	Molecular environment/ properties	Molecular environment known/ limits of phys-chem properties less well defined	Moderate	X	10
Endpoint	Clear and unambiguous	Acute toxicity	Low	X	10
Species Relevance	Unambiguous identification	Relevant across aquatic taxa	Low	X	10
Metabolic Domain	Metabolic activation	No requirement for metabolic activation	Low	x	5
Mechanistic Interpretation	Defined mechanism / AOP	Non-polar narcosis	Low	X	5
Mechanistic Causality	Chemistry is associated with the MIE and / or KE	Unreactive chemistry consistent with membrane accumulation	Low	X	2
Coverage	Low coverage / few false positives	Coverage not known	High	x	2
Performance	Excellent predictive performance	Performance statistics not known	High	x	2
1° Supporting Evidence	Supporting toxicological data	Many acute toxicity data across species	Low	X	10
2° Supporting Evidence	NAMs	Many NAMs data	Low	x	2

Further information \rightarrow Mark Cronin: m.t.cronin@ljmu.ac.uk

Aims of Investigation

- To develop an approach to evaluate the uncertainty of structural alerts.
- То demonstrate evaluate uncertainty and confidence that may be placed in structural alerts for ecotoxicology.

References

1. Cronin M.T.D. (2019) Environ. Sci.: Processes Impacts 19: 213-220.

2. Sapounidou M. et al (2020) Under Review in *Environmental Sciences & Technology*

3. Cronin M.T.D. (2019) Regul. Toxicol. Pharmacol. 106: 90-104.

Mark TD Cronin,¹ Franklin Bauer,² David J Ebbrell,¹ James W Firman,¹ Steve Gutsell,³ Geoff Hodges,³ Jayne Roberts,³ Maria Sapounidou,¹ Nicoleta Spinu,¹ Paul Thomas² ¹School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK ²KREATiS, Lyon, France ³SEAC, Unilever Research, Sharnbrook, UK

> Criteria were defined relating to the properties of, and uncertainty associated with, structural alerts for toxicity prediction. These are based on:

- Description and domain of the structural alert

- Performance of the structural alert

Quantification and Weighting of Uncertainty Scores

- A weighting scheme is proposed for the criteria, as would be applied for grouping.
- The raw and weighted scores for the structural alert are shown in Figure 1.

- uncertainty, electrophilic and specific MIEs higher uncertainty (data not shown).
- addressed with further evidence e.g. existing data, NAMs etc.
- Use cases for structural alerts will emphasise different uncertainty evaluation criteria.

Conclusions

LIVERPOOL

UNIVERSITY

Methods

• Concordance and consistency of biology e.g. supporting data

Evidence of causality e.g. mechanisms of action

The criteria were applied to structural alerts for mechanistic classification.

• To facilitate the process of quantifying uncertainty, scores were applied: Low = 1 Moderate = 2 High = 3 Some criteria are considered more important e.g. full definition of the alert species, supporting information.

Discussion

Structural alerts for classification of environmental toxicity were assessed: alerts for narcosis have low

Evaluations of structural alerts in terms of uncertainties allowed for weaknesses to be identified: these can be

Uncertainty criteria may be used to characterise different types of alerts and provide confidence in their use.

• Criteria to evaluate the uncertainty of structural alerts have been established. • Application of the criteria demonstrates the overall confidence that can be placed in an alert.

