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Introduction

« The environmental risk assessment of chemicals (in an aguatic context) is a process often impeded by a general shortage of suitable experimental data.

Fish

 With ~350,000 substances registered for use globally, alternative methods are required enabling ready, rational identification of intrinsically hazardous compounds.

* In silico (computational toxicology) approaches, such as the chemical classification and mode of toxic action assignment schemes devised by Verhaar et al. [1] and
Russom et al. [2], have gained prominence as practical, cost-effective means through which these aims might be achieved.

« Such “first generation” profilers are, by now, decades old — holding restricted coverage of chemical space and taxa, and offering limited mechanistic resolution.

« We have, accordingly, developed an updated, “second generation” system: expanding breadth both of chemistry and of the species considered (spanning fish,
crustacea and algae), whilst grounding conclusions in the context of the molecular initiating event (MIE) framework [3,4].

1 « The form and structure of this novel scheme, alongside its implementation as a practical screening tool (within KNIME software), are each discussed beneath.

 Further consideration is given to its future enhancement, including proposed integration alongside the related KREATIS MechoA rule-set [5,6].
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Collaborative integration of this rule-set, alongside that underlying
the KREATIS MechoA scheme [5,6], remains ongoing (please refer to
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