SARA-ICE: A Self-contained Model for Predicting a Human Relevant Point-of-Departure for Skin Sensitization

Georgia Reynolds

EUROTOX 2025

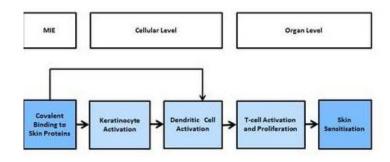
SARA-ICE, a Bayesian probabilistic model for skin allergy risk assessment

Database

The core dataset underpinning the model uses data in the NICEATM ICE database.

434 chemicals

1,407 in vivo studies 2,575 in vitro studies



Input Assay Types

OECD TG NAM Assays aligned to key events in the skin allergy AOP.

- DPRA, kDPRA (KE1)
- KeratinoSens (KE2)
- ➤ U-Sens, hCLAT (KE3)
- Human (HMT/HRIPT) & LLNA studies may also be used.

Model Outputs

SARA-ICE calculates a continuous measure of sensitiser potency. ED_{01} (1% sensitising dose in human patch test).

> A PoD (SARA-ICE DA)
Or

GHS Classification (SARA-ICE Extended)

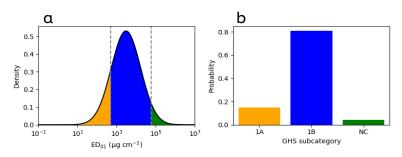
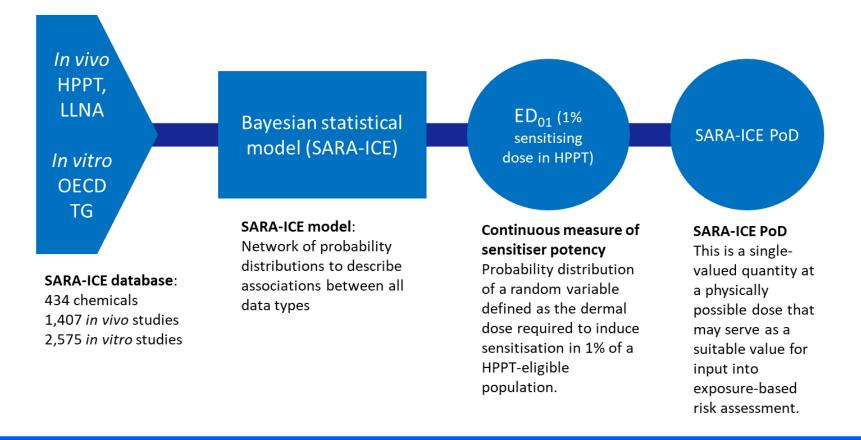
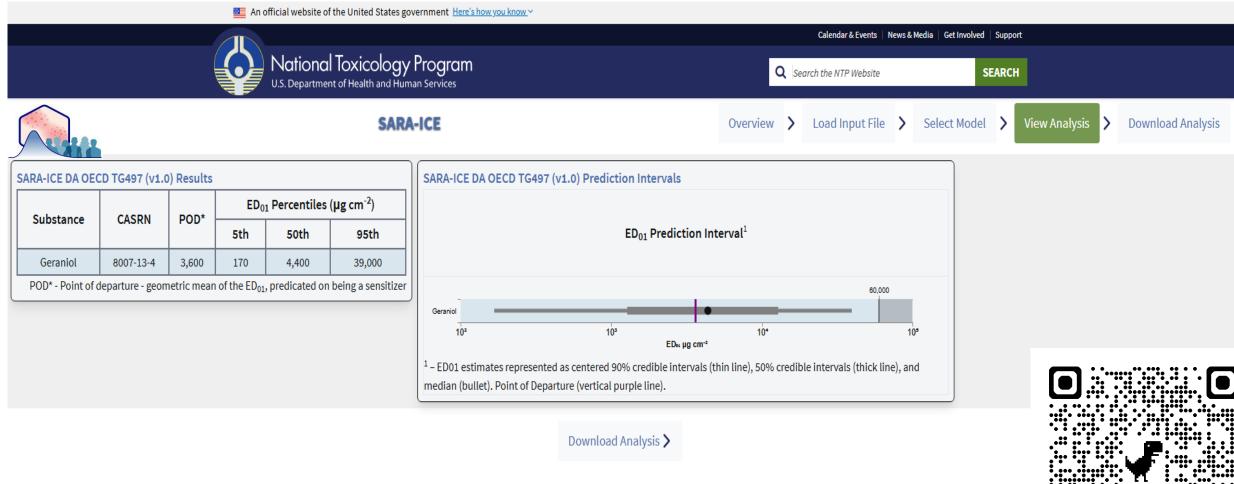


Figure (a) Example estimate of ED_{01} distribution with overlay of GHS subcategories 1A, 1B and NC defined thresholds, (b) probability of each GHS subcategory from ED_{01} distribution


OECD Defined Approaches (DAs) for Skin Sensitisation (GL 497)

- In 2021, OECD Test Guideline 497 was adopted, meeting regulatory requirements for:
 - DAs that discriminate between sensitizers and non-sensitizers
 - DAs that discriminate strong from weak/moderate sensitizers (i.e., GHS potency categories)
- In 2021, the US and UK began a joint led feasibility study project under OECD for evaluating a defined approach that can provide a point of **departure** for quantitative risk assessment
- In 2024, the project began drafting an update to OECD TG 497 to incorporate DAs for PoD determination
- In June 2025, an update to OECD GL 497, including SARA-ICE DA, was published.


SARA-ICE DA (OECD GL 497)

Assay	HPPT	LLNA	DPRA	kDPRA	KeratinoSens	h-CLAT	U-Sens
Inputs into SARA-ICE	Dermal dose # tested # sensitised	EC ₃ or max. cx. tested if no response	% depletion of cys and lys peptide	Log Kmax	EC _{1.5} or max. cx. tested IC50 or max. cx. tested	CD86 EC ₁₅₀ , CD50 EC ₂₀₀ or max. cx. tested CV ₇₅ or max. cx. tested	CD86 EC ₁₅₀ or max. cx. tested CV ₇₅ or max. cx. tested

SARA-ICE DA User Interface

The SARA-ICE Model User Interface (for OECD 496 DA and Extended versions) is available on the NTP Website.

SARA-ICE NAM PoD: Application in Risk Assessment

Acceptable Margin of Exposure (acceptable MoE) = a value above which a risk assessor may usually conclude low risk for their safety assessment.

We have developed an approach to define NAM PoD equivalent acceptable MoEs so that SARA-ICE PoDs can be applied in current risk assessment methodologies such as QRA.

Published in the ICCS Best Practise Guidance 2025.

Table 11. Side by Side Comparison of the Acceptable MoE from a Traditional NESIL-Based Risk Assessment to that for PoD_{NAM} from SARA-ICE

Acceptable MoE for traditional, NESIL- based risk assessment	Median of the distribution for the acceptable MoE for SARA-ICE PoDs			
3	3			
10	10			
30	30			
100	100			
300	360			
1,000	1,700			
Source: Reynolds et al. 2025				

Box 8. Example Safety Assessment Using PoD_{NAM} and NAM Acceptable MoE:

Scenario: 0.02% of 'Substance X' in a deodorant

Exposure: $CEL = 5 \mu g/cm^2$

 PoD_{NAM} : = 4800 µg/cm² (derived using SARA-ICE DA)

$$MoE = \frac{4800}{5} = 960$$

Acceptable MoE = 360 (translated from a traditional Acceptable MoE of 300 for products applied to the underarm (Appendix B. Historically applied Safety Assessment Factors (SAFs)to a NAM Acceptable MoE using Reynolds et al., 2025 as in Table 11)

Safety Assessment Conclusion: No appreciable risk; MoE of 960 > Acceptable MoE of 360

Best Practice Guidance Document

Skin Sensitization Assessment: Using New Approach Methods for Substances in Cosmetics and Personal Care Products

July 21, 2025

Summary

- SARA-ICE DA fulfils a gap in the current OECD TG 497 on defining a PoD for risk assessment
- SARA-ICE allows flexible use of a range of OECD TG NAMs (as well as historical LLNA/Human data)
- SARA-ICE NAM PoDs can be applied in current skin sensitisation risk assessment methods by applying calculated acceptable MoEs, replacing traditional SAFs

OECD GL 497

SARA-ICE User Interface

ICCS BPG

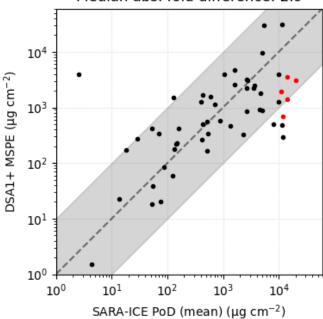
Thank You

SERS Safety, Environmental & Regulatory Science

georgia.reynolds@unilever.com

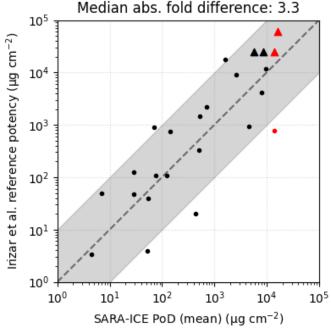
seac.unilever.com

The NICEATM Group


Back up slides

Evaluation of the SARA-ICE PoD

SARA-ICE vs reference DSA1+


Pearson correlation: 0.64 (n=54) Geo. mean fold difference: 1.2 Median fold difference: 1.3 Geo. mean abs. fold difference: 3.7 Median abs. fold difference: 2.9

SARA-ICE mean PoDs (from NAM data) relatively unbiased relative to reference DSA1+. PoDs on average around 3-fold away.

SARA-ICE PoDs vs Irizar et al. benchmarks

Pearson correlation: 0.84 (n=24) Geo. mean fold difference: 0.75 Median fold difference: 0.58 Geo. mean abs. fold difference: 3.6 Median abs. fold difference: 3.3

SARA-ICE mean PoDs (from NAM data) relatively unbiased relative to Irizar et al. reference potency. PoDs on average around 3.5-fold away.

SARA-ICE DA (Extended Version)

Input

In vivo

In vitro

OECD

TG

434 chemicals

SARA-ICE database:

1,407 in vivo studies

2.575 in vitro studies

HPPT, LLNA Bayesian statistical model (SARA-ICE)

SARA-ICE model:

Network of probability distributions to describe associations between all data types

GHS classification thresholds:

Threshold 1A/1B: 500 µg cm⁻² Thresholds 1B/NC: 60,000 µg cm⁻²

> **GHS** classification probabilities

Decision model:

Call 1 if $P(1) > \theta_{bin}$ Call NC if P(NC)> θ_{hin} Call 1A if P(1A | 1) > θ_{sub} Call 1B if P(1B | 1) > θ_{sub}

> **GHS** classification decision model

Continuous measure of sensitiser potency

ED₀₁ (1%

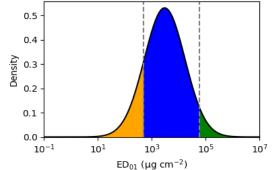
sensitising

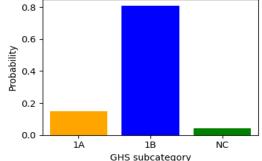
dose in HPPT)

Probability distribution of a random variable defined as the dermal dose required to induce sensitisation in 1% of a HPPT-eligible 0.5

population. 0.4 0.2

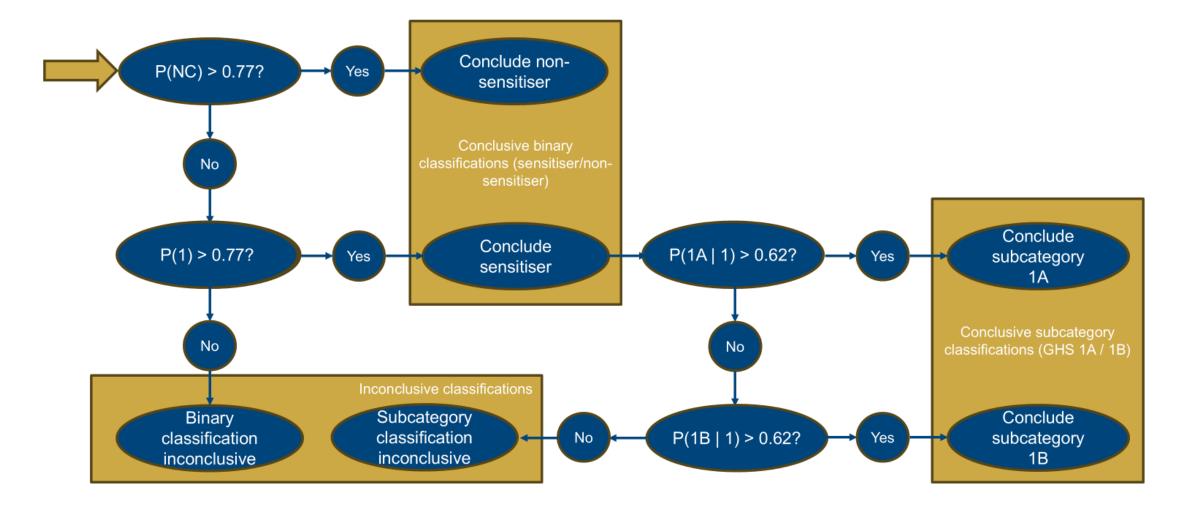
Categorical measure of sensitiser potency


Probability that chemical potency should be categorised as GHS 1A, 1B or NC.


GHS classification GHS call if probability passes thresholds chosen within the

decision model

 $\theta_{\rm bin}$ = selected probability threshold for making a binary classification (1/NC)


 θ_{sub} = selected threshold for making a sub-classification of 1A of 1B, contingent on class 1 being true

GHS Classification Decision Model (SARA-ICE Extended)

SARA-ICE NAM vs OECD DASS benchmarks

The SARA-ICE decision model has been evaluated against OECD benchmark classifications.

Binary classifications

Human, $\Theta_{\rm bin} = 0.77$	SARA-ICE 1	SARA-ICE NC	Inconclusive	Total
Reference 1	37	5	13	55
Reference NC	0	5	6	11
Total	37	10	19	66

Sensitivity: 88% Specificity: 100%

Balanced accuracy: 94%

Inconclusive rate on reference class 1: 24%

Inconclusive rate on reference class NC: 55%

LLNA, $\Theta_{\rm bin}=0.77$	SARA-ICE 1	SARA-ICE NC	Inconclusive	Total
Reference 1	89	9	37	135
Reference NC	2	19	12	33
Total	91	28	49	168

Sensitivity: 91%

Specificity: 90%

Balanced accuracy: 91%

Inconclusive rate on reference class 1: 27% Inconclusive rate on reference class NC: 36% Subcategory classifications

Human, $\Theta_{\text{bin}} = 0.77$, $\Theta_{\text{sub}} = 0.62$	SARA 1A	SARA 1B	SARA NC	Inconclusive	Total
Reference 1A	14	2	0	5	21
Reference 1B	3	7	5	16	31
Reference NC	0	0	5	6	11
Total	17	9	10	27	63

Sensitivity 1A: 88%, Specificity 1A: 85%, Balanced accuracy 1A: 86%

Sensitivity 1B: 47%, Specificity 1B: 90%, Balanced accuracy 1B: 69%

Sensitivity NC: 100% Specificity NC: 84%, Balanced accuracy NC: 92%

Average balanced accuracy: 82%

Inconclusive rate on reference class 1A: 24%

Inconclusive rate on reference class 1B: 52%

Inconclusive rate on reference class NC: 55%

LLNA, $\Theta_{\text{bin}} = 0.77$, $\Theta_{\text{sub}} = 0.62$	SARA 1A	SARA 1B	SARA NC	Inconclusive	Total
Reference 1A	27	3	0	8	38
Reference 1B	12	22	8	43	85
Reference NC	0	1	19	13	33
Total	39	26	27	64	156

Sensitivity 1A: 90%, Specificity 1A: 81%, Balanced accuracy 1A: 85%

Sensitivity 1B: 52%, Specificity 1B: 92%, Balanced accuracy 1B: 72%

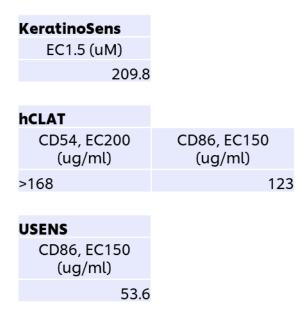
Sensitivity NC: 95% Specificity NC: 89%, Balanced accuracy NC: 92%


Average balanced accuracy: 83%

Inconclusive rate on reference class 1A: 21% Inconclusive rate on reference class 1B: 51% Inconclusive rate on reference class NC: 39%

Estimates of the ED_{01} use NAM data only (1xDPRA, 1xKeratinoSens, 1xh-CLAT, 1xkDPRA). Sensitivity, specificity and accuracy is computed for **conclusive** classifications only.

SARA-ICE DA (Extended Version)


Application of the SARA-ICE Models

Example Case Study: Geraniol

> Using NAM data only, generate a PoD (SARA-ICE DA) and GHS Classification (SARA-ICE Extended)

SARA-ICE Input Data:

Substance Name	CASRN	MW (g/mol)
Geraniol	8007-13-4	154.25
DPRA Depletion Cys (%)	Depletion Lys (%)	
12.3	2.6	
kDPRA		
log Kmax (M-1 s- 1)		
-3.4		

