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1. Introduction   
Consumer and environmental safety decisions can be aided by QSAR models built on exposure and hazard data. 

We can validate models using performance metrics but this is inadequate for high-stakes decisions. Uncertainty 

quantification can help by allowing models to feedback to us when it is unsure of the given prediction, alerting 

users that more evidence  is required [1]. However, estimates of uncertainty should not be blindly trusted — they 

need to be validated robustly like any other model.  
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2. Data and methods 
Data for 21 toxicologically relevant targets were obtained from ChEMBL v23. External validation data was ob-

tained from ChEMBL v25, with training data removed. Further details may be found in Allen et al. [2] 

Three uncertainty quantification methods were applied:  

1. Bayesian bootstrapping (BB) as described by Rubin [3], and implemented in Python by Cialdella et al. [4] 

 

 

 

 

 

 

 

2. Conformal prediction (CP) as described by Vovk et al. [5], and implemented in Python by Linusson et al. [6] 

 

 

 

 

 

3. A Bayesian neural network (BNN) implemented by Allen et al. [2] 
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3. Uncertainty metrics 
To evaluate the quality of uncertainty quantification, we propose the following uncertainty metrics for each 

model, designed to be easily interpretable:  

1. Calibration R2 score (↑, 1.00 is best) 

 For a given confidence level of X, the true value is within the  

 predicted range X of the time.  

 This should be true for all 0 ≤ X ≤ 1.  

2. Efficiency score (↓) 

 

  

         Mean of all predicted standard deviations.  

       Predictions should have as low  

 uncertainty as possible on average. 

 

 

3. Dispersion score (↑) 

 Standard deviation of all  

 predicted standard deviations.  

 Some predictions must be more uncertain 

  than others.  

4. Geometric mean of probabilities (GMP) (↑) 

 Geometric mean of p values for all predictions. This is analogous to the 

 proper scoring rule negative-log-likelihood [7], but has units of probability.  

 Rewards confidence when the predicted mean is close to  the true value 

 and uncertainty when the predicted mean is not.  

4. Model performance 
Models were built for 21 targets, mean metrics across all targets for each uncertainty method are reported below:  
 

  -  BB produces the smallest confidence intervals, but it is often 

 overconfident and has poor performance elsewhere.  

  -  CP has good calibration and excellent dispersion scores. It is 

 very reliant on the calibration set being a good sample of 

 the target chemical space.   

  -  BNN is the most robust model, with the best calibration and 

 GMP in external validation. It is however too conservative 

 and predicts very wide confidence intervals even in the test 

 set where it should be more confident.  

Metric BB CP BNN 

Test Calibration 0.087 0.922 0.765 

Test Efficiency 0.154 0.856 1.110 

Test Dispersion 0.023 0.296 0.096 

Test GMP 0.633 0.645 0.281 

Val Calibration -1.003 0.794 0.905 

Val Efficiency 0.292 0.985 1.159 

Val Dispersion 0.120 0.437 0.102 

Val GMP 0.001 0.164 0.219 

7. Conclusion 
1.  Interpretable metrics for evaluating uncertainty quantification 

2.  Uncertainty includes information about applicability domain 

3.  Uncertainty allows us to make more useful and nuanced predictions 
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5. Interpretating uncertainty 

If model is well calibrated, can define 

confidence interval: X% probability that 

true value is within range (X = 95 shown) 

Epistemic uncertainty is correlated 

with distance to nearest neighbours, 

therefore is intrinsically a notion of 

applicability domain 

If interested in a critical threshold, 

can find P(> critical) which is more 

meaningful than comparing predicted 

mean to the threshold.  

6. Case studies 

SMILES: Cc1cc(O)c(CN2CCCC2)c2c1C(=O)/C(=C\c1ccco1)O2 

Predicted mean:     [4.54] 

95% CI:       [3.12] — [5.96] 

Epistemic uncertainty:    [0.244] 

P(> 5):       [0.255] 

Two example molecules from the validation set for the ADRB2 model are shown below.  

Molecule A has a lower epistemic uncertainty — it is closer to the applicability domain of the model and the 
model is more confident in the predicted mean. However because the predicted mean is close to the critical 
threshold of 5, there is still a significant P(> critical) of 0.255. Molecule B shows the reverse situation.  

SMILES: CN(CCCn1c(=O)oc2cc(CNC[C@H](O)c3ccc(O)c(NC=O)c3)ccc21) 

Predicted mean:     [6.28] 

95% CI:       [4.53] — [8.04] 

Epistemic uncertainty:    [0.574] 

P(> 5):       [0.929] 
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