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Consumer and environmental safety decisions can be aided by QSAR models built on exposure and hazard data. To evaluate the quality of uncertainty quantification, we propose the following uncertainty metrics for each

We can validate models using performance metrics but this is inadequate for high-stakes decisions. Uncertainty model, designed to be easily interpretable: AN
quantification can help by allowing models to feedback to us when it is unsure of the given prediction, alerting 1. Calibration R2 score (", 1.00 is best) = //
. . . . . . ! | e -cal r‘a e | 1 7 SR
users that more evidence is required [1]. However, estimates of uncertainty should not be blindly trusted — they , , . s |\ / / / |
. . For a given confidence level of X, the true value is within the < | \/ SRR ANy ans
need to be validated robustly like any other model. s N A/
L . predicted range X of the time. AREEE _;;\_; VARRER
1 Predicted mean True value S/ »
M - 015 This should be true forall 0 < X < 1. _ 20/ 1 /1 j\j HE
QJI'*I"‘ p=0u. Confidence c,\oo |/ " | /| confidence
T 2. Efficiency score ({) intervalstoo\”:/ 7l 7 Tintervals too
1 0.40 wide ﬁ'_ﬁ/ﬁﬁﬁﬁﬁﬁﬁﬁﬁ
| | el . Predicted 1= narrow
H,H.'. 0 J% i | i *'*it-«*' 2| Predicted FeCIEter mean More efficient: o T o2 T Toe T T e T Top
. z s | +‘++ r ! 2518 §°'30' standard 0.8 1 -Confident in Confidence level
F _ ‘ E ; ‘ + 'i'*.J.-L +, - +§ﬂ_# ‘+ 30.25 deViation 0.7 / mean
Hn Sy TN .3 . 3 e VERMELT By 4 ® 0.15 0.6 i o
; Q‘ £ ‘ * 1 8o . Mean of all predicted standard deviations.
N M S | "“ff;‘&g%é* 0.05{ 0.13% 2.14% 2.14% 0.13% 044 Less efficient: o
J(\(/;E") ’ 2 3 4 5 6 7 8 9 10 11 D.OD-HHM u—-30 p-20 pu-o u U+0 p+20 p+30 u+4o o5 /— Ul;]ce{tain PrEdICtlonS ShOUId have as IOW
Experimental Activity apout mean . .
CT 02 uncertainty as possible on average.
. ] . . 0.1_
Data Model, metrics Prediction, uncertainty o Efficiency score
B S S S ¢
Distribution for a single prediction Less disperse: %87
All predictions have ;.
similar uncertainty —
3. Dispersion score (") e
0.5 1
Standard deviation of all 041
: : : . ) . o .
Data for 21 toxicologically relevant targets were obtained from ChEMBL v23. External validation data was ob oredicted standard deviations. B "~
tained from ChEMBL v25, with training data removed. Further details may be found in Allen et al. [2] . . Distinguish between —
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Three uncertainty quantification methods were applied: than others.

istribution of predicted
1. Bayesian bootstrapping (BB) as described by Rubin [3], and implemented in Python by Cialdella et al. [4] 4. Geometric mean of probabilities (GMP) (T") Et'é‘ﬁiia‘r’é‘ﬁzv?aﬁé‘?\;—cm

Geometric mean of p values for all predictions. This is analogous to the

Predicted mean True value
Sampling .\‘ Learner1 |— Aggregating p;i=0.27 proper scoring rule negative-log-likelihood [7], but has units of probability.

Learner2 |, " Rewards confidence when the predicted mean is close to the true value

" \ and uncertainty when the predicted mean is not.
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2. Conformal prediction (CP) as described by Vovk et al. [5], and implemented in Python by Linusson et al. [6]

Learner :@

on-conform™ Con%encé@ Models were built for 21 targets, mean metrics across all targets for each uncertainty method are reported below:
threshold
Metric BB CP BNN - BB produces the smallest confidence intervals, but it is often
3. A Bayesian neural network (BNN) implemented by Allen et al. [2] Test Calibration 0.087 0.922 0,765 overconfident and has poor performance elsewhere.
N_N "f’Eig_htsa"e Test Efficiency 0.154 0.856 1110 | - CP has good calibration and excellent dispersion scores. It is
distributions Test Dispersion 0.023 0.296 0.096 very reliant on the calibration set being a good sample of
Test GMP 0.633 0.645 0.281 the target chemical space.

Mean-variance | Many samples Val Calibration 1.003 0.794 0905 | _ BNN is the most robust model, with the best calibration and
estimation val Efficiency 0.292 0.985 1.159 GMP in external validation. It is however too conservative
Val Dispersion 0.120 0.437 0.102 and predicts very wide confidence intervals even in the test

Decp ensemble Val GMP 0.001 0.164 0.219 set where it should be more confident.

Two example molecules from the validation set for the ADRB2 model are shown below.

95% of probability mass i Molecule A has a lower epistemic uncertainty — it is closer to the applicability domain of the model and the
5 ‘ - P model is more confident in the predicted mean. However because the predicted mean is close to the critical
% - j.‘:' ' threshold of 5, there is still a significant P(> critical) of 0.255. Molecule B shows the reverse situation.
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If model is well calibrated, can define Epistemic uncertainty is correlated SMIL’ES: Cclcc(O)c(CN2CCCC2)c2c1C(=0)/C(=C\clcccol)02 SMII_.ES: CN(CCCn1c(=0)oc2cc(CNC[C@H](O)c3ccc(0)c(NC=0)c3)ccc21)
. . . Predicted mean: [4.54] Predicted mean: [6.28]
confidence interval: X% probability that with distance to nearest neighbours, 95% Cl- 3.12] — [5.96] 95% Cl- [4.53] — [8.04]
true value is within range (X =95 shown) therefore is intrinsically a notion of Epistemic uncertainty: [0.244] Epistemic uncertainty: [0.574]
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If interested in a critical threshold, 1. Interpretable metrics for evaluating uncertainty quantification

can find P(> critical) which is more
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meaningful than comparing predicted 2. Uncertainty includes information about applicability domain

mean to the threshold. 3. Uncertainty allows us to make more useful and nuanced predictions
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