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Bioactivity: exposure ratios derived from a systemic NAM-toolbox distinguish between low and high-risk chemical-exposure scenarios
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STEP 1: DEFINE TOOLBOX COMPONENTS AND PERFORM PROOF OF PRINCIPLE STUDY STEP 3: EVALUATE THE TOOLBOX

A critical question for risk assessors and regulators is whether safety assessments based on non-animal data can be
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JEstimation of internal exposure using different levels of input parameters to build the physiologically-based kinetic for 11 chemicals, CSP gave the lowest PoD for 5 chemicals and HTTr (gene level) gave the Rutviated H nggim;ﬁfg;‘g i e ..:
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dividing them by the plasma Cmax estimates for each chemical exposure scenario. Fig.3 Ketoconazole - ® ® -
(Estimation of a bioactivity point of departure (PoD) was done across 3 different assays set ups consisting of the shows the resulting BER plot when L2 PBK estimates are used and compared to the 2-Amino-6-chloro-4-nitrophenol - = = =
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effects on the transcriptome of 3 cell lines (HepG2, HepaRG, MCF7). Bayesian statistical models were built to analyse the respectively?. senzocaine 1 19N risk oo
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Exposure Estimation ) is within a tiered and iterative framework encompassing all lines of evidence. ybenclamide
Data Generation O Trimelliticanhydride is a known sensitiser, and it is likely that in a risk assessment T“IEEFQ?; ) o P
framework the risk posef:l by sensitisation v.ia ’Fhe inhalation route would limit the Cetirizine dihydrochloride - = o
o< £ how the BER exposure below that which poses a systemic risk. Chlorpyrifos o m o
- Ig. 1. summary oj hnow tne IS 7 : tvi : : Ketoconazole & oE »
BER Calculation calculated Using exbosUre and d /n w{'rodata available for t'he agtmty of Warfarin at |.ts.target, VKORC1, would change Cyclophosphamide - H o o © NAMPOD
g exp
bioactivity data the risk assessment conclusion with a measured 1C50 giving a BER<<1. Azathioprine - . ® o m Traditional POD
Dexamethasone - &4 iH ® - ® Exposure
lculgti ‘ , . , b , ¢ " d b . dul d It can reasonably be envisaged that PBK models parameterised with in vitrodata are the Digoxin { @ — o . .
Calcul ation kc: a I,B'OISCt'V'ty E);poslu re Ratio (BER) com me; |2pll1ts roml L fe exposure and bioactivity assay modules, most likely future scenario for a novel risk assessment, although the performance metrics 10-5 10-3 10-1 101 10 10°
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Conceptually a BER > 1 indicates a low risk of adverse effects in consumers if the following assumptions are true: Fig. 4 Summary plot of the external exposure estimates with the
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