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Introduction: Assessing the safety of human microbiome perturbations from
New Generation Sequencing (NGS) data

NGS data from clinical studies have shown taxonomic associations between
health and disease

M MICROBIOLOGY oiscover our porttotio = Our resources ~
SOCIETY
About us ~

MICROBIAL GENOMICS

Open Accoss
Assessing the safety of microbiome perturbations

A “healthy” microbiome is relative to the host general and local health status,
body site, age, lifestyle, environmental factors etc.

A “healthy” microbiome is not universally defined because of confounding
factors & bias between studies due to extraction methods & bioinformatics
analysis

Some NGS data analysis challenges:
« Multivariate

« Sparsity

« Heteroscedasticity

-« Compositionality

=> To understand the safety of intervention, experimental design (part 1) & data analysis (part 2) of
#2  clinical studies need to be optimised.
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Part1

Optimising experimental design
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Clinical study design: targeted longitudinal studies cqopia cenomcs

.........

Aline Metris', Alan W. Walker?, Alicia Showering®, Andrea Doolan*, Andrew J. McBain®,

Randomized controlled trials with enough power are costly so for smaller studies, consider the
following:

= Target population (geographical, age, lifestyle, vulnerability ...)

— Cross-over designs
« Each participant serves as their control - minimize the people variability effect

« Time series - as microbiome resilience linked to health
= Intervention: realistic dose, exposure (site, frequency) & comparison with a control

= Sampling, extraction, measurement methods (e.g. 16S rRNA region) & bioinformatics adapted
to body site/question (e.g. 16S reference database)

= Additional measurements to NGS data: quantitative counts (gPCR, flow cytometry), other
types of data (e.g. —omics to look at function) and adequate host (e.g. cytokines) &

environment (e.g. pH, moisture) metadata/measurements.
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M|crob|ologlcul risk
assessment

Example of safety assessment approach:
the reversibility of change for beauty and personal care products

> Including a control/placebo to define significant change (on the same '
person where possible)
» Including qPCR for quantitative representation of the microbiome

End of product

Baseline =P
Application of active and control application

Regression
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The microbiome returning to its initial state after a period of application and
regression is evidence of low risk - relative Risk Assessment.
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Part 2

Optimising data analysis
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N G S d ata co m p os it i o n a lity Microbiome Datasets Are Compositional: And This Is Not Optional
Gregory B. Gloor!* Jean M. Macklaim* Vera Pawlowsky-Glahn? ‘ Juan J. Egozcue®
Figure: https://doi.org/10.3389%2Ffmicb.2017.02224
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Consequence of compositionality -representation with PCoA vs. PCA

PCoA of the Bray-Curtis dissimilarity between samples by Panellist and Gender PCA of CLR-transformed read counts by Panellist and Gender
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In a study with 10 panellists of volar and dorsal skin samples treated by ethanol, the
largest source of variability is panellists (ANOSIM R=0.41, Significance: 0.0002) followed by
gender. The PCA representation renders the grouping more clearly than PCoA.
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Consequence of compositionality - Differential Abundance (DA)

LETTER

doi:10,1038/nature244 60

Quantitative microbiome profiling links gut
community variation to microbial load

Doris Vandeputte>?#, Gunter Kathagen'?*, Kevin D’hoe' ™, Sara Vieira-Silva'?#, Mireia Valles- Colomer'?, Jodo Sabino*,
Jun Wang'~, , Lindsey De Commer’, Youssef 12 ¢, Gwen Falony'”§

', Raul Y. Tito', L

Darzi', Séverine Vermeire*, Gwes croen Raes'%§

https://www.nature.com/articles/nature24460

Stools samples analysed with flow
cytometry for cell counts.

Cells counts did not correlate with
sequencing depth but biological process
like transit time.

Analysis of the differential abundance
leads to different results when looking at
quantitative vs. relative abundance with
Crohn’s disease (CD).
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Ficure 4 | Quantitative microhiome alterations in Crohn's disease.
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Hierarchical mixed-effects models for random and confounding factors

Hierarchical mixed-effects models

Yij — Q] + B X x; + €
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Random effects Fixed effects e.g. time
e.g. people (j) or intervention (i)
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For example, in Maaslin3, abundance and prevalence are regressed
separately, there is an option to separate fixed from random effects
(equation based on lme4 R library) and scaling options.

CD Crohn’s disease, UC Ulcerative Colitis
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The potential of big data & metadata for better predictions with ML
methods

1000 Female
Male

Taxonomic signatures of cause-specific mortality risk
inhuman gut microbiome

Aaig Ville Laitinen, Aki S. Havulinna, Guillaume Meric, Susan Cheng, Markus Perola, Liisa

Valsta, Georg Alfthan, Michael Inouye, Jeramie D Watrous, Tao Long, Rodolfo A Salido, Karenina Sanders,

Caitriona Brennan, Gregory C. Humphrey, Jon G. Sanders, Mohit Jain, Pekka Jousilahti, Veikko Salomas,

Rob Knight, Leo Lahti =& Teemu Niiranen &
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lifestyle and linked to health data.
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Early prediction of incident liver

disease using conventional risk factors

and gut-microbiome-augmented
gradient boosting
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The hazard ratio (HR, all causes) for death correlates
with the third coordinate of beta diversity (PC3 driven
by species of the Enterobacteriaceae family, based on
centred-log-ratios of abundance).
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Microbiome predictive of risk score for incident liver disease
Gradient boosting outperforms ridge & logistic regression



SERS - Safety, Environmental & Regulatory Science | Unilever R&D @

Future work: the microbiome and risk assessments O ———
MICROBIAL GENOMICS

Open Access
Assessing the safety of microbiome perturbations =

Clinicaldata
management

& modeuing Aling Metris', Alan W. Walker®, Alicia Showering’, Andrea Doolan®, Andrew J McBain®,
NS :

Experimental methods & Metadata (host & environment)
Measurements & Q-

data analysis bias

Environment/lifestyle
confounding factors

Risk?

Defining endpoints for host
microbiome functions in health

\ and disease

Testing

in vitro
(7

Monitoring potentially
vulnerable populations

Pabd 2P

Metris et al., 2025. Microbiome perturbation safety assessments. Microbial Genomics.

o To characterise endpoints, need to have a transparent - data, metadata (host, environment & methods)
0 o and models, especially those based on ML methods.
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Conclusions

At present, as we have no well-defined health endpoint, risk assessments are relative, and clinical
longitudinal studies are the most informative.

« Sequencing data are compositional == appropriate normalisation, metrics & quantitative measurements
are necessary.

« Current development of scaling methods & tools based on linear mixed-effect model are promising for
differential abundance allowing to consider people variability and other sources of variability.

« ML methods applied to longitudinal population cohorts has the potential to disentangle complex &
overlapping relationships and identify vulnerable populations but require link to health records.

To advance risks assessments NGS data need to be linked to the host health, environmental conditions &
methods (metadata).
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