Advancing Regulatory Compliance with NAMs: A Read-Across Case Study for a Mixture to Address Short-Term Repeated Dose Toxicity

Katarzyna Przybylak, Unilever SERS, UK

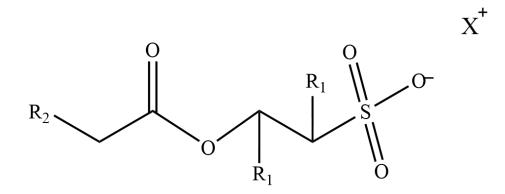
AIM of the CASE STUDY

Fill the data gap for short-term repeated dose toxicity study (28 days),

one species, male and female (oral and dermal exposure) for

Following the ECHA Read-Across Assessment Framework (RAAF)

https://echa.europa.eu/documents/10162/17221/raaf_en.pdf/614e5d61-891d-4154-8a47-87efebd1851a


TARGET - IDENTIFICATION & CHARACTERISATION

Chemical Name	FATTY ACIDS, C12-18 AND C18-UNSATD., 2-SULFOETHYL ESTERS, SODIUM SALTS	Constituents	Boundary Composition of DEFI (%)
6		Sodium capryloyl isethionate (C8)	
Synonyms	Direct Esterified Fatty Isethionate (DEFI)	Sodium caproyl isethionate (C10)	
Туре	Multi-constituent substance	Sodium lauroyl isethionate (C12)	
CAS RN	85408-62-4	Sodium myristoyl isethionate (C14)	
		Sodium palmitoyl isethionate (C16)	
EC No	287-024-7	Sodium stearoyl isethionate (C18)	
General structure		Caprylic acid (C8)	1
	Na ⁺	Capric acid (C10)	1
	O O	Lauric acid (C12)	
	-0, // [[]	Myristic acid (C14)	•
	CH_2	Palmitic acid (C16)	
	$H_{3}C$	Stearic acid (C18)	
		Impurities	
	n = 5, 7, 9, 11, 13, 15	Sodium Isethionate	
		Other	

- Test material identity (TMI) for 2 independent samples
- Full characterisation using battery of analytical methods: LC-MS, MS, NMR, metal analysis
- All constituents present in a concentration at or above 1 % are identified
- The compositional information is completed up to 100%

ANALOGUE(S) SELECTION

 $R_1 = H, CH_3$ $R_2 = C6 - C16$ (even numbered) $X^+ = N\alpha, NH_4$

Similarity in the isethionate core, chain type, length, counterion

Availability of high-quality data to fill data gap

Availability of the detailed TMI of the tested substance

FATTY ACIDS, COCO, 2-SULFOETHYL ESTERS, SODIUM SALTS (SCI)

READ-ACROSS HYPOTHESIS

- Target and source substances are different substances with the same type of effect(s) – this corresponds to RAAF scenario 2 – analogue approach
- Additionally, RAAF for multi-constituent substances and UVCBs has been also considered
- The premise is that both substances consist of the same constituents, with differences in their concentrations, which can impact some physico-chemical properties, however, they both have similar biological behaviour

This hypothesis will be supported by structural and physico-chemical properties, toxicokinetic data, a battery of NAMs data (both *in silico* and *in vitro*) and existing toxicological studies

SOURCE - IDENTIFICATION & CHARACTERISATION

AE A.1

Chemical Name	FATTY ACIDS, COCO, 2-SULFOETHYL ESTERS, SODIUM SALTS	Constituents	Boundary Composition of SCI (%)
Synonyms	SCI	Sodium caproyl isethionate (C6)	
Туре	Unknown or variable composition, complex	Sodium capryloyl isethionate (C8)	-
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	reaction products or biological materials (UVCB)	Sodium caproyl isethionate (C10)	-
CAS RN	61789-32-0	Sodium lauroyl isethionate (C12)	
		Sodium myristoyl isethionate (C14)	
EC No	263-052-5	Sodium palmitoyl isethionate (C16)	
		Sodium stearoyl isethionate (C18)	
	Na ⁺	Caprylic acid (C8)	•
	0 0.	Capric acid (C10)	
• •	o- \\\	Lauric acid (C12)	
General		Myristic acid (C14)	-
structure		Palmitic acid (C16)	
		Stearic acid (C18)	
	n = 3, 5, 7,9, 11, 13, 15	Sodium isethionate	-
		Other	

- TMI for 5 independent samples
- Full characterisation using battery of analytical methods: LC-MS, MS, NMR, metal analysis
- All constituents present in a concentration at or above 1 % are identified
- The compositional information is completed up to 100%

 $\Delta F \Delta .3$

EXPERIMENTAL DATA FOR SHORT-TERM REPEATED DOSE TOXICITY STUDY

1. OECD 410 (Repeated Dose Dermal Toxicity: 28-day Study in Rodents), 1991

SCI was applied topically at doses of **0, 80, 910 and 2070** mg/kg bw/day to groups of 10 rats/sex. Treatment was under occlusive coverage on 6 hours/day for 28 consecutive days. No clinical signs of toxicity (including local toxicity), no mortality and no effects on any other investigated parameter (body weight, body weight gain, food consumption, water consumption, haematology, clinical chemistry, organ weights, gross pathology, and histopathology) were observed up to and including the highest dose level.

NOAEL = 2070 mg/kg bw/day

2. OECD 407 (Repeated Dose Oral Toxicity: 28-day Study in Rodents), 1995

SCI was administered in the diet to groups of 10 rats/sex at concentrations of **0**, **0.1**, **0.3**, **and 1.0%** for 28 days. There were no clinical signs of toxicity attributable to treatment, no mortality, and no adverse effects on any other investigated parameter (body weight, body weight gain, food consumption, water consumption, haematology, clinical chemistry, organ weights, gross pathology, and histopathology) observed up to and including the highest dose level.

NOAEL = 627 mg/kg bw/day for males

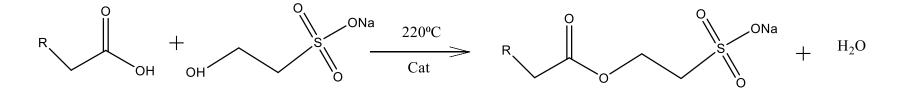
NOAEL = 720 mg/kg bw/day for females

SIMILARITY JUSTIFICATION

Manufacturing & exposure

Structural

Physico-chemical


Toxicokinetics

Toxicodynamics

MANUFACTURING & EXPOSURE

□ Common route of synthesis: esterification

R = C6 – C16 (even numbered)

 Cosmetic (soap bars) products produced by Unilever

Usage

SC

DEF

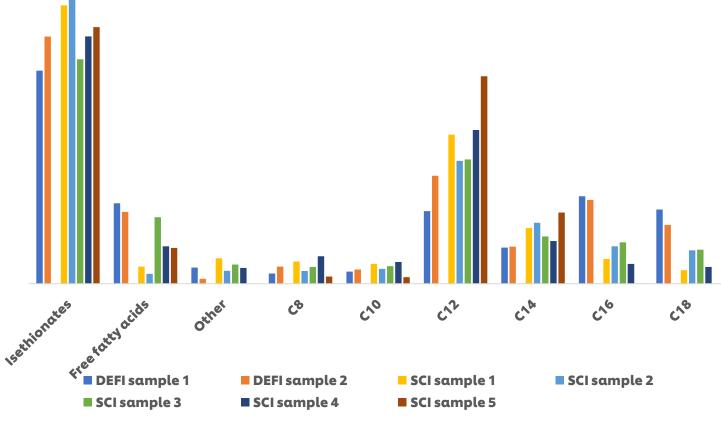
Cosmetic products
Washing, cleaning, and maintenance products (i.e. homecare) Due to their properties as an anionic surfactants, they can solubilise fats, and form foams and emulsions with fats and oils

MANUFACTURING & EXPOSURE

□ Common route of synthesis: direct esterification

DEFI and SCI have:

□ The same route of synthesis


Similar occupational and consumer exposure

(i.e. homecare).

STRUCTURAL SIMILARITY

Summary of the comparison of structural composition of individual samples

Similarities in composition

- Both substances contain the same constituents
- Sodium lauroyl isethionate is the most abundant constituent in both substances

Dissimilarities in composition

- The target and the source substances differ in the chain length distributions:
 - DEFI has higher proportion of C16 and C18
 - SCI has a higher proportion of C12 and C14
- DEFI has higher proportion of free fatty acids (except of one SCI sample 3), especially longer alkyl chains of C16 and C18

STRUCTURAL SIMILARITY

Similarities in composition

Both substances contain the same

DEFI and SCI have:

- The same constituents
- Different chain length distribution
- □ Different levels of free fatty acids

3), especially longer alkyl chains of C16 and C18

PHYSICO-CHEMICAL SIMILARITY

Property	DEFI	SCI	
Physical state at 20°C & 101.3kPa	Solid	Solid	
Calculated LogP at 20°C	2.78	1.28	
Melting Point (°C)	199.85-237.85	225	
Boiling Point (°C)	>275	>300	
Relative density	1.21 at 22°C	1.11 at 20°C	
Vapour Pressure at 25°C (Pa)	3.5x10⁻ ⁶	<0.002-0.006	
Calculated Water Solubility (g/L)	0.27	3.49	
Calculated pKa at 25°C	Isethionate = 1.1	Isethionate = 1.1	
Culcululed pru ul 25 C	Fatty acids = 4.8	Fatty acids = 4.8	
Surface tension (mN/m) at 1 g/L	42.5	24	

Membrane-water partitioning							
Log Kmw	_	Single component STD @~200uM		DEFI Sample 2 @ 600uM			Mean
	Replic	Replicate Analyses		Replicate Analyses			
C8 Isethionate	-	-	-	3.39	3.43	3.67	3.50
C10 Isethionate	3.54	3.70	3.47	3.62	3.63	3.82	3.63
C12 Isethionate	4.60	4.58	n/a	4.30	4.39	4.35	4.42

PHYSICO-CHEMICAL SIMILARITY

The structural differences have impact on some physico-chemical properties like logP, WS, VP and surface tension

TOXICOKINETICS SIMILARITY

AE 2.1 & AE 2.2 & AE 2.4

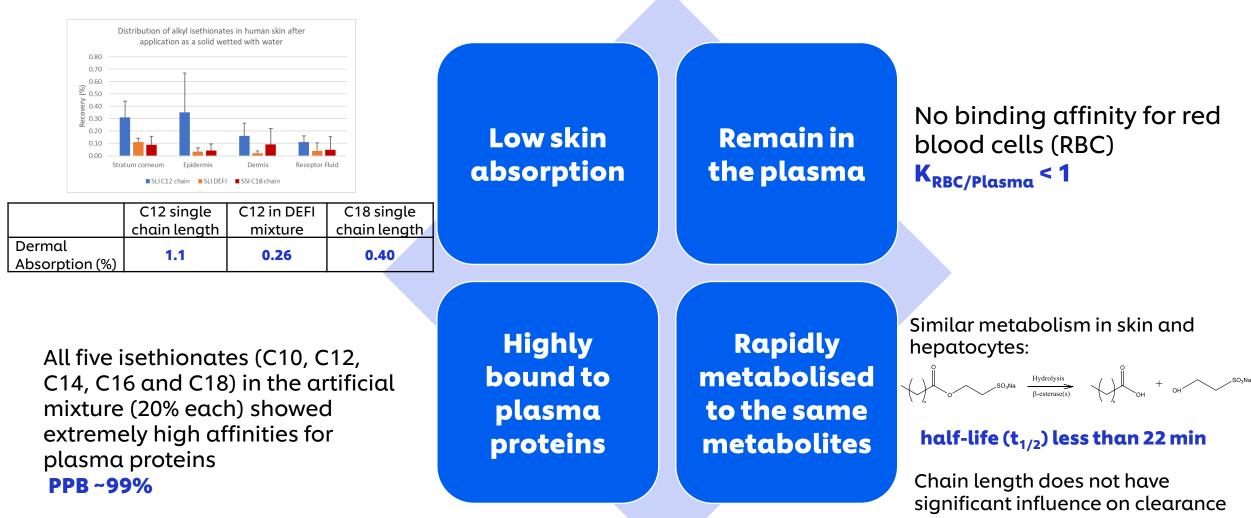
The tested samples:

- The individual alkyl isethionate constituents (C8-C18)
- DEFI mixture
- For skin absorption, radio-labelled single chain of C12 and C18 and for C12 in the DEFI mixture

The battery of *in vitro* assays to determine ADME:

Dermal absorption

Metabolism


- In vitro skin metabolism assay
- Stability in biological matrices assay
- Hepatocyte stability (CLint) assay
- Blood to plasma ratio (BP ratio)

Plasma protein binding (ultrafiltration assay) (PPB)

TOXICOKINETICS SIMILARITY

AE 2.1 & AE 2.2 & AE 2.4

TOXICOKINETICS SIMILARITY

The structural & physico-chemical differences do not impact ADME properties

Based on ADME data for five isethionates

DEFI and SCI have similar toxicokinetics behaviour

TOXICODYNAMICS SIMILARITY - *in silico* DATA

AIM: to investigate the impact of structural differences on the systemic bioactivity of the substances

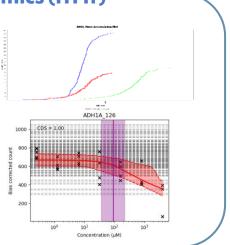
Derek Nexus by Lhasa Limited is a knowledge-based expert system and contains a set of structural alerts for a variety of toxicological endpoints

> 41 endpoints relevant to systemic toxicity have been selected

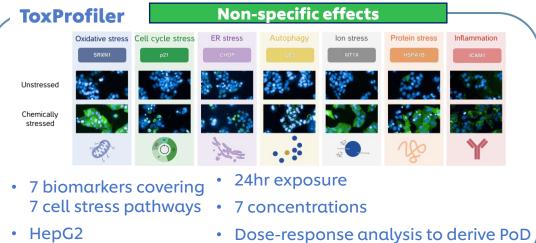
AE 2.2

All constituents of DEFI & SCI do not have any alerts for systemic toxicity endpoints

TOXICODYNAMICS SIMILARITY - *in vitro* DATA AE 2.2 & AE 2.3


Non-specific effects

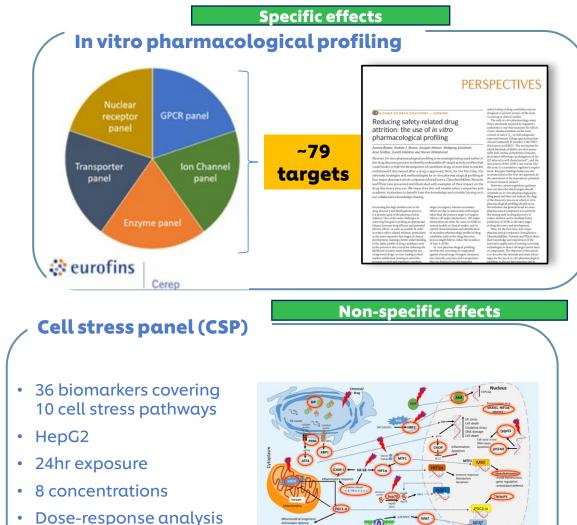
High-Throughput transcriptomics (HTTr)

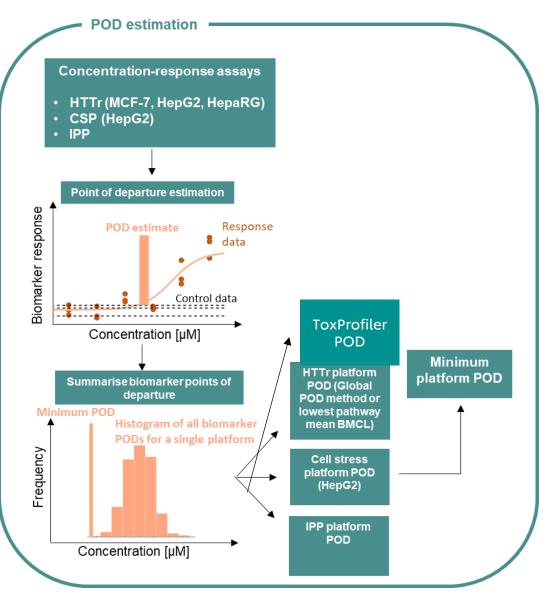

- TempO-seq technology full gene panel
- 24hr exposure

Unilever

- 7 concentrations
- Various cell models (e.g. HepG2, MCF7, HepaRG)
- Dose-response analysis using BMDExpress2 and BIFROST model

Reynolds et al. 2020. Comp Tox 16: 100138 Baltazar et al. 2020. Toxicol Sci 176(1): 236-252




Image kindly provided by Paul Walker (Cyprotex)

Hatherell et al. 2020. Toxicol Sci 176(1): 11-33

using **BIFROST** model

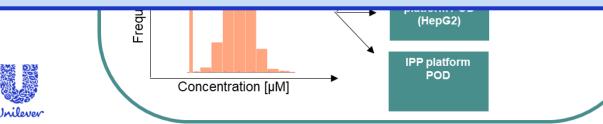
🚬 Ter Braak et al. 2024. Toxicology 509, 153970

TOXICODYNAMICS SIMILARITY - Point of Departure (POD) ESTIMATION

Unilever

 DEFI and SCI showed high similarity in the biological activity and potencies
 The lowest PODs for DEFI and SCI were derived from transcriptomics assays

> **DEFI**: POD (μM) = 0.92 **SCI**: POD (μM) = 0.86


> > AE 2.2 & AE 2.3

TOXICODYNAMICS SIMILARITY - in silico & in vitro DATA

POD estimation

Both, *in silico* & *in vitro* data showed

similar biological behaviour for DEFI and SCI

BRIDGING STUDIES

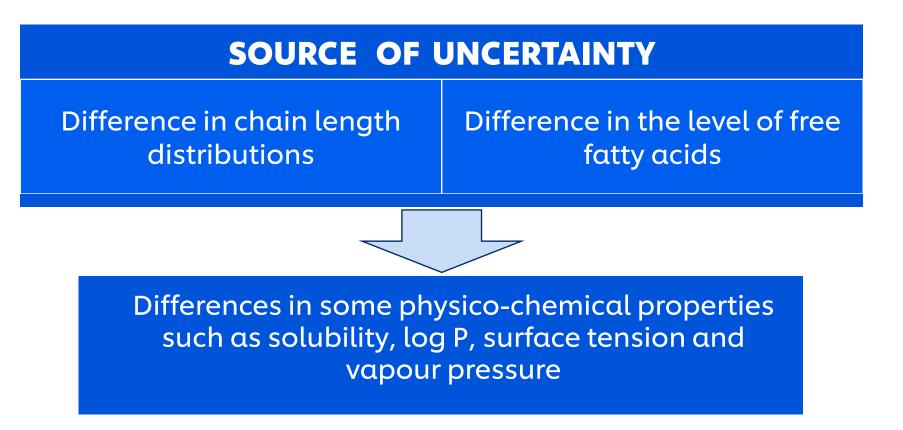
AE 2.5

ASSAY	DEFI	SCI	
Acute Oral Toxicity OECD TG 401	Results: LD50 (rat, m/f) 8400 mg/kg bw/day	1.Results: LD50 (rat, m/f) >2000 mg/kg bw/day 2. Results: LD50 (rat, m/f) >5000 mg/kg bw 3.Results: LD50 (rat, m/f) >5000 mg/kg bw	
Skin irritation/corrosion (<i>in vivo</i>) OECD TG 404	Non-guideline study Results: Moderately irritating	Results: Slightly irritating	
Eye irritation (<i>in vivo</i>) OECD TG 405	Non-guideline study Results: Moderately irritating	1. Results: Irritating 2. Results: Irritating 3. Results: Irritating	
	Not mutagenic in absence or presence of metabolic activation	Not mutagenic in absence or presence of metabolic activation	
Genetic toxicity ToxTracker ACE	Not genotoxic	Not genotoxic	

BRIDGING STUDIES

Existing toxicological data showed that

DEFI and SCI are non-genotoxic, no acute toxicant & mild skin and eye irritants


Not genotoxic

Not genotoxic

UNCERTAINTY ASSESSMENT

Low uncertainty related to the source data to be read from SCI to DEFI

- High quality data (OECD guideline and GLP compliant)
- Detailed substance identity (TMI)

UNCERTAINTY ASSESSMENT

REDUCE THE UNCERTAINTY					
N/	Bridging studies				
In silico data	Suite of <i>in vitro ADME</i> & bioactivity assays	Existing human- relevant toxicity data			

Demonstrate the similar biological (toxicokinetics and toxicodynamics) behaviour of the target (DEFI) and the source (SCI)

READ-ACROSS SUMMARY

Univer

Target and source are different compounds with qualitatively similar properties

SIMILARITY JUSTIFICATION	Target DEFI	Source SCI	Similarities	Dissimilarities
Manufacture and exposure	Esterification processUsage in cosmetics	 Esterification process Usage in cosmetics and home care 	 Synthesis route Occupational and consumer exposure 	Usage in home care
Structural/ compositional	 Contain alkyl isethionates and fatty acids of C8 to C18 	 Contain alkyl isethionates and fatty acids of C8 to C18 	 The same constituents C12 isethionate the most abundant component 	Alkyl chain distributionLevel of free fatty acids
Physico- chemical	 Solid, non-volatile substance 	 Solid, non-volatile substance 	• MP, density, pKa	 Small differences in logP, WS, VP and γ
Toxicokinetics	 Low skin absorption low BP ratio High PPB Rapid metabolism to SI and FA 	 Low skin absorption low BP ratio High PPB Rapid metabolism to SI and FA 	 Low skin absorption Remain in the plasma Highly bound to plasma proteins Rapidly metabolised to the same metabolites 	NO
Toxicodynamics/ toxicity	 Lowest PoD = 0.92 In silico: lack of alerts No genotoxic No acute toxicity Skin and eye irritant 	 Lowest PoD = 0.86 In silico: lack of alerts No genotoxic No acute toxicity Skin and eye irritant 	Similar biological behaviour and potencies	NO

READ-ACROSS SUMMARY

Target and source are different compounds with qualitatively similar properties

Provided reliable scientific evidence that the source substance's (SCI) data for the 28-day oral and dermal toxicity studies can be read across to the target substance (DEFI)

/toxicity

- No genotoxic
- No acute toxicity
- Skin and eye irritant

- No genotoxic
- No acute toxicity
- Skin and eye irritant

CONCLUSIONS

- Demonstrated the regulatory compliant read-across case study for the complex mixtures (both target and source) for higher tier endpoint (short-term repeat dose)
- Strictly followed RAAF Scenario 2 (analogue) and RAAF for mixtures

Robust similarity justification provided:

- Manufacturing and exposure
- Structural
- Physico-chemical
- Toxicokinetics
- Toxicodynamics
- Demonstrated how the implementation of NAMs data (in vitro and in silico) can result in improved justification and reduced uncertainty

Read-across justification requires multi-disciplinary team effort

Acknowledgements

Fazila Bunglawala Jade Houghton Steve Gutsell Predrag Kukic Suzanne Martin Beate Nicol **Gopal Pawar** Joe Reynolds Wendy Simpson Sandrine Spriggs Alexandre Teixeira Mesha Williams Kathryn Wolton Adam Wood

SERS - Safety, Environmental & Regulatory Science | Unilever R&D

seac.unilever.com

Thank You

SELECTION of *in vitro* NAMs

- Internal project on developing strategy for NGRA two phase study published in Pilot study (Middleton et al., 2022) and Extended evaluation(Cable et al., 2025)
- A set of in vitro assays was evaluated to investigate the exposure modelling and bioactivity coverage
- The selected assays have broad biological coverage relevant for both systemic and DART
- Assays with standardisation of study design & experimental protocols have been selected

Middleton AM, et al. Toxicol Sci. 2022, 25;189(1):124-147 <u>https://doi.org/10.1093/toxsci/kfac068</u> Cable S, et al. Toxicol Sci. 2025, 204(1), 79–95 <u>https://doi.org/10.1093/toxsci/kfae159</u>

Calculation of POD

- PODs were calculated using internal statistical model BIFROST for all biomarkers and genes across all cell lines
- The global POD represents an estimate of the minimum effect concentration across all biomarkers or genes. The method quantifies uncertainty in the POD as a probability distribution for each gene.

Reynolds J. et al. Computational Toxicology, 2020, 16, 100138, <u>https://doi.org/10.1016/j.comtox.2020.100138</u>

