Next generation risk assessment (NGRA)

Paul Russell

Outline

PART ONE

• Introduction to Next Generation Risk Assessment (NGRA): concepts and tools

PART TWO - Worked example

- Exposure information and collation of existing information
- In vitro biological activity characterisation
- Risk assessment conclusion

Can we use a new ingredient safely?

 Can we safely use x% of ingredient y in product z?

PART ONE

Introduction to Next Generation Risk Assessment (NGRA): concepts and tools

TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND STRATEGY

USING 21ST CENTURY SEPA SCIENCE TO IMPROVE RISK-RELATED

EVALUATIONS

Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Sys

Final Report

A Strategic Roadmap for Establishing New Approaches to Evaluate the Safety

Technolo

of Chemicals and Medical Products in the United States

Utilization

AGENCY COORDINATING COMMITTEE ON THE VAL

co

ry 2018

TDA U.S. FOOD & DRUG

FDA'S PREDICTIVE TOXICOLOGY ROADMAP

The National Academics of SCIENCES - ENGINEERING - MEDICINE REPORT

Next Generation Risk assessment (NGRA)

What is NGRA?

- Using new tools and approaches (NAMs New Approach Methodologies) to build a risk assessment to enable decisions to be made
- An exposure-led risk assessment solution to biological pathway-indicated hazard concerns

Hazard Identification

Hypothesis driven

Exposure led

Mechanistic

ICCR Nine principles of NGRA

Main overriding principles:

- The overall goal is a human safety risk assessment
- The assessment is exposure led
- The assessment is hypothesis driven
- The assessment is designed to prevent harm

Principles describe how a NGRA should be conducted:

- Following an appropriate appraisal of existing information
- Using a tiered and iterative approach
- Using robust and relevant methods and strategies

Principles for documenting NGRA:

- Sources of uncertainty should be characterized and documented
- The logic of the approach should be transparent and documented

NGRA: The overall goal is a human safety risk assessment

Tox21/ToxCast ~700 HTS Biological Pathways Assays

Unilever

"Advances in toxicogenomics, bioinformatics, systems biology, and computational toxicology could transform toxicity **testing from a** system based on whole-animal testing to one founded primarily on *in vitro* methods that evaluate changes in biologic processes using cells, cell lines, or cellular components, preferably of human origin." 2007

National Institute of Environmental Health Sciences (NIEHS) / National Toxicology Program (NTP)

National Center for Advancing Translational Sciences (NCATS)

U.S. Food and Drug Administration (FDA)

National Center for Computational Toxicology (EPA)

NGRA: The assessment is exposure-led

- Route of exposure
- Consumer use (Habits &Practices)
- Applied dose (external concentration)

ADME parameters

C,

C1+1

- Skin penetration
- Phys-chem properties
- Hepatic clearance
- Fraction unbound
- blood:plasma ratio

Uncertainty analysis-Population simulation

Physiologically-based kinetic (PBK) modelling - Internal concentration (plasma, urine, organlevel)

NGRA: The assessment is designed to prevent harm

Distributions of Oral Equivalent Values and Predicted Chronic Exposures 1e+04 Estimated Exposure Range of in vitro AC50 values converted to human 1e+02 in vivo daily dose 1e+00 1e-02 Safety margin 1e-04 Actual Exposure (est. max.) Slide from Dr Rusty Thomas, Rotroff, et al. Tox.Sci 2010 EPA, with thanks

Unilever

The philosophy behind this type of risk assessment aimed at preventing harm is **based on the premise of "Protection not Prediction".**

The hypothesis underpinning this type of NGRA is that **if there is no bioactivity observed at consumer-relevant concentrations, there can be no adverse health effects.**

NGRA: The assessment is hypothesis driven & should be conducted Using a tiered and iterative approach

Russell S Thomas et al., 2019. The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Tox Sci 169(2):317-332.

Unilever

NGRA: Using robust and relevant methods and strategies to characterise bioactivity

In silico tools

ToxTree

In silico models to predict Molecular initiating events (MIEs)

TOXICOLOGICAL SCIENCES, 165(1), 2018, 213-223

doi: 10.1093/toxsci/kfy144 Advance Access Publication Date: July 18, 2018 Research Article

Using 2D Structural Alerts to Define Chemical Categories for Molecular Initiating Events

Timothy E. H. Allen,* Jonathan M. Goodman,*,1 Steve Gutsell, † and Paul J. Russell^{ $\dagger}$

Metabolic fate predictions

NGRA: Using robust and relevant methods and strategies to characterise bioactivity

-5.0 -4.5 -4.0 -3.5

NGRA: Using robust and relevant methods and strategies to characterise bioactivity

Tox21/ToxCast

Unilever

DNA damage/cell cycle •

NGRA: Using robust and relevant methods and strategies to characterise bioactivity

High-throughput transcriptomics and High-throughput phenotypic profiling developed to increase biological coverage

Harrill J et al 2019. Considerations for strategic use of high-throughput transcriptomics chemical screening data in regulatory decisions. Current Opinion in Toxicology 15, 64-75

Nyffeler J et al 2019. Bioactivity screening of environmental chemicals using imagingbased high-throughput phenotypic profiling. *Toxicol Appl Pharmacol.* 2020;389:114876.

Thomas RS et al. The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicol Sci. 2019;169(2):317-332.

NGRA: Using robust and relevant methods and strategies to characterise bioactivity

Image kindly provided by Paul Walker (Cyprotex)

36 biomarkers identified that were representative of key stress pathways, mitochondrial toxicity and cell health.

OXFORD Society of Toxicology academic.oup.com/toxsci

TOXICOLOGICAL SCIENCES, 2020, 1-23

doi: 10.1093/toxsci/kfaa054 Advance Access Publication Date: May 6, 2020 Research article

Identifying and Characterizing Stress Pathways of Concern for Consumer Safety in Next-Generation Risk Assessment

Sarah Hatherell,* Maria T. Baltazar,* Joe Reynolds,* Paul L. Carmichael,* Matthew Dent,* Hequn Li,* Stephanie Ryder,[†] Andrew White,* Paul Walker (),[†] and Alistair M. Middleton^{*,1}

*Unilever Safetv and Environmental Assurance Centre. Colworth Science Park. Sharnbrook. Bedfordshire

For some chemicals pathway-based risk assessment might be needed

Adverse Outcome Pathway (AOP) risk assessment

Adapted from Kevin Crofton 2010, OECD

For some chemicals pathway-based risk assessment might be needed

Examples of Adverse Outcome Pathway (AOP) risk assessment

Induction of skin sensitisation that leads to allergic contact dermatitis

Unilever

Probabilistic prediction of human skin sensitiser potency for use in next generation risk assessment

Joe Reynolds^{*}, Cameron MacKay, Nicola Gilmour, David Miguel-Vilumbrales, Gavin Maxwell Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford MK44 11Q, UK

Anti-androgenic and estrogenic effects

TOXICOLOGICAL SCIENCES, 167(2), 2019, 375-384

doi: 10.1093/toxsci/kfy245 Advance Access Publication Date: September 22, 2018 Research Article

Employing Dietary Comparators to Perform Risk Assessments for Anti-Androgens Without Using Animal Data

Matthew P. Dent,^{*,1} Hequn Li,^{*} Paul L. Carmichael,^{*} and Francis L. Martin[†] [']Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire MK44 1LQ, UK; and [']School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK

Regulatory Toxicology and Pharmacology 71 (2015) 398-408

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

An exposure:activity profiling method for interpreting high-throughp screening data for estrogenic activity—Proof of concept

Richard A. Becker^{a,*}, Katie Paul Friedman^b, Ted W. Simon^c, M. Sue Marty^d, Grace Patlev J. Craig Rowlands^d

NGRA: the margin of safety (MoS) approach and decision making

0 8

Chlorpv

Margin of Safety

Unilever

NGRA: Sources of uncertainty should be characterized and documented

PART TWO

Case Study Example

A theoretical case study approach – human health safety assessment required for...

0.1% COUMARIN IN FACE CREAM FOR EU MARKET (NEW FRAGRANCE)

Assumed that:

- Coumarin was 100% pure
- no *in vivo* data was available such as animal data, History of Safe Use (HoSU) info. or Clinical data
- no use of animal data in Read Across
- *In silico* alerts known to be based on animal or *in vivo* data or on the structure of Coumarin itself were excluded

Extra reading....

Baltazar *et al* (2020) <u>A Next-Generation Risk Assessment Case Study for</u> <u>Coumarin in Cosmetic Products</u>. Toxicological Sciences, 176, 236-252

TOXICOLOGICAL SCIENCES, 176(1), 2020, 236-252

doi: 10.1093/toxsci/kfaa048 Advance Access Publication Date: April 10, 2020 Research article

A Next-Generation Risk Assessment Case Study for

Coumarin in Cosmetic Products

Maria T. Baltazar,¹ Sophie Cable, Paul L. Carmichael, Richard Cubberley, Tom Cull, Mona Delagrange, Matthew P. Dent, Sarah Hatherell, Jade Houghton, Predrag Kukic, Hequn Li, Mi-Young Lee, Sophie Malcomber, Alistair M. Middleton, Thomas E. Moxon (), Alexis V. Nathanail, Beate Nicol, Ruth Pendlington, Georgia Reynolds, Joe Reynolds, Andrew White, and Carl Westmoreland

Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK

¹To whom correspondence should be addressed. Fax: +44(0)1234 264 744. E-mail: maria.baltazar@unilever.com.

ABSTRACT

Unilever

Next-Generation Risk Assessment is defined as an exposure-led, hypothesis-driven risk assessment approach that integrates new approach methodologies (NAMs) to assure safety without the use of animal testing. These principles were applied to a hypothetical safety assessment of 0.1% coumarin in face cream and body lotion. For the purpose of evaluating the use of NAMs, existing animal and human data on coumarin were excluded. Internal concentrations (plasma *C*_{max}) were estimated using a physiologically based kinetic model for dermally applied coumarin. Systemic toxicity was assessed using a battery of *in vitro* NAMs to identify points of departure (PoDs) for a variety of biological effects such as receptor-mediated and immunomodulatory effects (Eurofins SafetyScreen44 and BioMap Diversity 8 Panel, respectively), and general bioactivity (ToxCast data, an *in vitro* cell stress panel and high-throughput transcriptomics). In addition, *in silico* alerts for genotoxicity were followed up with the ToxTracker tool. The PoDs from the *in vitro* assays were plotted against the calculated *in vivo* exposure to calculate a margin of safety with associated uncertainty. The predicted *C*_{max} values for face cream and body lotion were lower than all PoDs with margin of safety higher than 100. Furthermore, coumarin was not genotoxic, did not bind to any of the 44 receptors tested and did not show any immunomodulator.

					in	0	Contact Us	🚯 Unilever (Global 🗸	Q Search
Unilever	Home	About TT21C	Research Topics	Events	Resources	News	Workin	a with Us	Susta	inability

Resources

Access publications, presentations and posters on our 21st century safety sciences produced by SEAC scientists, and also in collaboration with our scientific partners.

www.tt21c.org

Next-Generation Risk Assessment case study workflow for 0.1% coumarin in face cream

Baltazar et al., Toxicological Sciences, Volume 176, Issue 1, July 2020, Pages 236–252 https://doi.org/10.1093/toxsci/kfaa048

Exposure information and collation of existing information

NGRA for 0.1% coumarin in face cream: exposure estimation

Table 2: Estimated daily exposure levels for different cosmetic product types according to Cosmetics Europe data (SCCNFP/0321/00; Hall et al., 2007, 2011).

Product type	Estimated daily amount applied	Relative amount applied (mg/kg bw/d)	Retention factor ¹	Calculated daily exposure (g/d)	Calculated relative daily exposure (mg/kg bw/d)
Bathing, showering					
Shower gel	18.67 g	279.20	0.01	0.19	2.79
Hand wash soap ²	20.00 g	-	0.01	0.20 ³	3.33
Hair care					
Shampoo	10.46 a		0.01	0.11	1.51
Hair condition			- 01	0.04	0.60

B. Hall et al. / Food and Chemical Toxicology 49 (2011) 408-422

Assessment is exposure-led and uses available habits and practices data

With Coumarin

Parameter	Face cream
Amount of product used per day (g/day) using 90th percentile	1.54
requency of use	2 times/day
Amount of product in contact with skin per occasion (mg)	770
ngredient inclusion level	0.1%
skin surface area (cm2)	565
xposure duration per occasion	12 hours
Amount of ingredient in contact with skin per occasion mg)	0.77
ocal dermal exposure per occasion (µg/cm2)	1.36
Systemic exposure per day (mg/kg)	0.02

NGRA for 0.1% coumarin in face cream: exposure estimation- Internal concentration using PBK modelling- Model Inputs

Moxon *et al.,* (2020). Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. Toxicology in Vitro Volume 63

NGRA for 0.1% coumarin in face cream: in silico predictions

Generation of hypothesis for potential Molecular Initiating events –**ToxTree, MIE ATLAS*, OECD toolbox**

- Coumarin might bind to proteins- MIE for induction of skin sensitisation
- DNA binding alert + epoxide formation MIE for genotoxicity
- Reactive metabolites might be formed with alerts for both genotoxicity and skin sensitisation

• No binding alerts for the 39 targets in MIE atlas

*Allen THE et al., 2018. Using 2D Structural Alerts to Define Chemical Categories for Molecular Initiating Events. Toxicol Sci. 2018 Sep 1;165(1):213-223

NGRA for 0.1% coumarin in face cream: *in vitro* existing information

*AC50= activity concentration at 50% of maximal activity

NGRA for 0.1% coumarin in face cream: exposure estimation

Exposure Estimation

- Total plasma Cmax values obtained from PBK model: 0.002 µM (mean), 0.005 µM (99th percentile)
- Stability assays indicated coumarin rapidly metabolized mainly via CYP2A6

Collate Existing Information

- Genotoxicity and skin sensitisation alerts for parent compound
- Hydroxylation predicted as main route of biotransformation
- Reactive metabolites (e.g. epoxides) predicted.
- Low bioactivity in ToxCast and Pubchem: binding to Carbonic Anhydrases and MAO-A/B reported
- Lowest PoD was 3 µM for carbonic anhydrase I (Figure 7)

In vitro biological activity characterisation

Next-Generation Risk Assessment case study workflow for 0.1% coumarin in face cream

NGRA for 0.1% coumarin in face cream: In vitro biological activity characterisation: Genotoxicity assessment: ToxTracker

Initial hypothesis:

 DNA binding alerts for coumarin and metabolites

Standard ToxTracker assay +S9					
DNA da	amage	p53	Ox. s	stress	UPR
Bscl2	Rtkn	Btg2	Srxn1	Blvrb	Ddit3
	St	andard ToxTr	acker assay -	S9	
DNA da	St amage	andard ToxTr p53	- acker assay Ox. s	S9 stress	UPR
DNA da Bscl2	St amage Rtkn	andard ToxTro p53 Btg2	a <mark>cker assay</mark> - Ox. s Srxn1	S9 s tress Blvrb	UPR Ddit3

toxys

Positive (>2-fold induction) Weak activation (1.5 to 2-fold induction) Negative (<1.5-fold induction)

Results:

• ToxTracker negative

Reactive coumarin metabolite(s) could induce DNA lesions secondary to
 oxidative stress

Initial hypothesis:

• Protein binding alerts for coumarin and metabolites

Step 1: Generation of in vitro results for Coumarin

	DP (TG4	PRA 42C)	KeratinoSe ns (TG 442D)	h-0 (TG	CLAT 442E)	U-SENS (TG 442E)	
Call	-۱	/e	+ve	+	ve	+ve]
Model Input	%cys depletion	%lys depletion	EC1.5 (µM)	CD54 (EC200 µg/mL)	CD86 (EC150 μg/mL)	CD86 (EC150 μg/mL)	
RUNS	1.0 0.7 2.2	0 0 0	200 175 NA	>637 <178 <178	>637 >637 >637	95 96 NA	

Initial results:

- Coumarin is a skin sensitiser
- Likely to be due to metabolites (-ve DPRA)

Step 2. Generation of PoD for risk assessment- Skin allergy risk assessment (SARA) Defined approach (DA)

 The SARA DA is a Bayesian probabilistic model, which estimates the human sensitiser potency via a prediction of a HRIPT 1% sensitising dose (ED₀₁) (i.e PoD) for a selected chemical.

SARA Model Inputs

- Historical Local lymph node assay (LLNA)
- Historical Human repeated insult patch test (HRIPT)
- In vitro data: DPRA (TG442C), KeratinoSens (TG 442D), h-CLAT (TG 442E), U-SENS (TG 442E)
- First publication dataset of 30 chemicals -

expanded to 53 core + 49 in vitro only

* Reynolds, J, MacKay C, Gilmour N, Miguel-Vilumbrales D and Maxwell G (Computational Toxicology, Volume 9, February 2019, Pages 36-49) Probabilistic prediction of human skin sensitiser potency for use in next generation risk assessment

Unilever

NGRA for 0.1% coumarin in face cream: Key results

Exposure Estimation

- Total plasma Cmax values obtained from PBK model: 0.002 µM (mean), 0.005 µM (99th percentile)
- Stability assays indicated coumarin rapidly metabolized mainly via CYP2A6

Collate Existing Information

- Genotoxicity and protein binding alerts for parent compound
- Hydroxylation predicted as main route of biotransformation
- Reactive metabolites (e.g. epoxides) predicted.
- Low bioactivity in ToxCast and Pubchem: binding to Carbonic Anhydrases and MAO-A/B reported
- Lowest PoD was 3 µM for carbonic anhydrase I (Figure 7)

In Vitro Biological Activity Characterisation

- ToxTracker negative; weak activation of DNA damage reporters (only +S9).
- Predicted MoS

 (400-160 000) suggests
 that the risk of inducing
 skin allergy is low at
 the consumer exposure

NGRA for 0.1% coumarin in face cream: In vitro biological activity characterisation: In vitro binding and enzymatic assays: Eurofins SafetyScreen44

To investigate possible interactions between coumarin and the 44 key targets involved in drug attrition

Ion Channel

panel

Results:

All binding and enzymatic assay results were negative at 10 µM

drug discovery and development process is a primary goal of the pharmaceutical ndustry. One of the main challenges in achieving this goal is striking an appropriate balance between drug efficacy and potential adverse effects1 as early as possible in order to reduce safety-related attrition, particularly in the more expensive late stages of clinical development. Gaining a better understanding of the safety profile of drug candidates early in the process is also crucial for reducing the likelihood of safety issues limiting the use of approved drugs, or even leading to their

of type A ADRs narket withdrawal, bearing in mind the ng societal and regulatory emphasi

(that is, off-target interactions). Off-target interactions are often the cause of ADRs in animal models or clinical studies, and so careful characterization and identification of secondary pharmacology profiles of drug candidates early in the drug discovery process might help to reduce the incidence In vitro pharmacological profiling involves the screening of compounds against a broad range of targets (receptors

ion channels, enzymes and transporters) that are distinct from the intended

other than the primary target (or targets) this testing early in drug discovery to reduce attrition and to facilitate better prediction of ADRs in the later stages of drug discovery and development. Here, for the first time, four major pharmaceutical companies (AstraZeneca GlaxoSmithKline, Novartis and Pfizer) share

NGRA for 0.1% coumarin in face cream: *In vitro* biological activity characterisation: Immunomodulatory screening assay: BioMap Diversity 8 Panel

To investigate possible effects on vascular inflammation, immune activation and tissue remodelling

Data suggested that coumarin has no immunomodulatory effects at relevant concentrations and is not an anti-inflammatory compound

https://www.discoverx.com/services/drug-discovery-development-services/primary-cell-phenotypic-profiling/diversity-plus

NGRA for 0.1% coumarin in face cream: In vitro biological activity characterisation: *In vitro* cell stress panel

Results:

Coumarin not very active in comparison to known "high risk compounds" like doxorubicin

 PoDs shown for HepG2 only

Hatherell *et al.*, 2020, Identifying and characterizing stress pathways of concern for consumer safety in next generation risk assessment, Tox. Sci. in Press. <u>https://doi.org/10.1093/toxsci/kfaa054</u>

NGRA for 0.1% coumarin in face cream: *In vitro* biological activity characterisation: High-Throughput Transcriptomics (HTTr) using TempO-SEQ technology

Transcriptomics was applied as a broad non-targeted biological screen

Differential expression analysis using DESeq2 analysis

Results:

Across the cell lines, treatment with coumarin resulted in limited gene-expression changes at concentrations below 100 µM, suggesting limited cellular effects at lower concentrations

NGRA for 0.1% coumarin in face cream: Key results

Exposure Estimation

- Total plasma Cmax values obtained from PBK model: 0.002 µM (mean), 0.005 µM (99th percentile)
- Stability assays indicated coumarin rapidly metabolized mainly via CYP2A6

Collate Existing Information

- Genotoxicity and protein binding alerts for parent compound
- Hydroxylation predicted as main route of biotransformation
- Reactive metabolites (e.g. epoxides) predicted.
- Low bioactivity in ToxCast and Pubchem: binding to Carbonic Anhydrases and MAO-A/B reported
- Lowest PoD was 3 µM for carbonic anhydrase I (Figure 7)

In Vitro Biological Activity Characterisation

- ToxTracker negative; weak activation of DNA damage reporters (only +S9)
- The probability of coumarin inducing skin sensitisation at the consumer exposure is low
- No immunomodulation potential
- Low bioactivity confirmed by binding/enzymatic assays, HTTr and cell stress panel.
- PoD range: 6-912 μM

NGRA for 0.1% coumarin in face cream: Preliminary Margin of Safety

Technology	Cell line/ Enzyme/Biomarker	Face cream Min. 5th percentile MoS	PoD provided as distribution?
Cell stress panel	HepG2 (ATP, 24h)	96738	Yes
Cell stress panel	NHEK (OCR 1h)	1330	Yes
HTTr	HepG2 (24h)	7223	No
HTTr	HepaRG (24h)	8864	No
Toxcast	MAO B (rat brain)	3711	No
PubChem	Carbonic Anhydrase Type I	706	No
PubChem	Carbonic Anhydrase Type II	2140	No
PubChem	Carbonic Anhydrase Type VI	14652	No

Based on total concentrations for both C_{\max} and PoDs

- The lowest MoS across all assays was derived using the PoD (represented by Ki) for the inhibition of carbonic anhydrase I
- All PoD are higher than predicted exposure

NGRA for 0.1% coumarin in face cream: Key results

Exposure Estimation

- Total plasma Cmax values obtained from PBK model: 0.002 µM (mean), 0.005 µM (99th percentile)
- Stability assays indicated coumarin rapidly metabolized mainly via CYP2A6

- Genotoxicity and protein binding alerts for parent compound
- Hydroxylation predicted as main route of biotransformation
- Reactive metabolites (e.g. epoxides) predicted.
- 90-100% coumarin predicted to be freely available *in vitro*
- Low bioactivity in ToxCast and Pubchem: binding to Carbonic Anhydrases and MAO-A/B reported
- Lowest PoD was 3 µM for carbonic anhydrase I (Figure 7)

In Vitro Biological Activity Characterisation

- ToxTracker negative; weak activation of DNA damage reporters (only +S9)
- The probability of coumarin inducing skin sensitisation at the consumer exposure is low
- No immunomodulation potential
- Low bioactivity confirmed by binding/enzymatic assays, HTTr and cell stress panel.
- PoD range: 6-912 µM
- Potential metabolitedriven bioactivity not addressed

Determine Margin of Safety

Preliminary MoS

706 - 96738

Unilever

NGRA for 0.1% coumarin in face cream: Next steps for refinement

- 1. Coumarin metabolism in primary human hepatocytes- investigation of metabolites formed in human *in vitro* liver models
- 2. Short and long-term exposure in 3D tissues- longer exposure durations in a 3D HepaRG model with potentially higher metabolic capacity and in vivo-like physiology than HepG2 cells

Next-Generation Risk Assessment case study workflow for 0.1% coumarin in face cream

NGRA for 0.1% coumarin in face cream: Coumarin metabolism in primary human hepatocytes

NGRA for 0.1% coumarin in face cream: Short and long-term exposure in 3D tissues

To increase our confidence in the initial PoDs from the 2D cell models

Technology	Cell line/ Enzyme/Biomarker	Face cream Min. 5th percentile MoS	PoD provided as distribution?
Cell stress panel	HepG2 (ATP, 24h)	96738	Yes
Cell stress panel	NHEK (OCR 1h)	1330	Yes
HTTr	HepG2 (24h)	7223	No
HTTr	HepaRG (24h)	8864	No
Toxcast	MAO B (rat brain)	3711	No
PubChem	Carbonic Anhydrase Type I	706	No
PubChem	Carbonic Anhydrase Type II	2140	No
PubChem	Carbonic Anhydrase Type VI	14652	No
Cell stress panel	HepaRG_3D (cell mem perm 168h)	9601	Yes
HTTr	HepaRG_3D_24h	9538	No

NGRA for 0.1% coumarin in face cream: Key results

Exposure Estimation

- Plasma Cmax obtained (range 0.002- 0.02 µM) from PBK models (Table 2)
- Stability assays indicated coumarin rapidly metabolized mainly via CYP2A6

Collate Existing Information

- Genotoxicity and protein binding alerts for parent compound
- Hydroxylation predicted as main route of biotransformation
- Reactive metabolites (e.g. epoxides) predicted.
- 90-100% coumarin predicted to be freely available *in vitro*
- Low bioactivity in ToxCast and Pubchem: binding to Carbonic Anhydrases and MAO-A/B reported
- Lowest PoD was 3 µM for carbonic anhydrase I (Figure 7)

Activity Characterisation	Metabolism refinement	Determine Margin of Safety
 ToxTracker negative; weak activation of DNA damage reporters (only +S9) The probability of coumarin inducing skin sensitisation at the consumer exposure is low No immunomodulation potential Low bioactivity confirmed by binding/enzymatic assays, HTTr and cell stress panel. PoD range: 6-912 µM Potential metabolite- driven bioactivity not addressed 	 Hydroxylation confirmed as main route of biotransformation at 10 µM Reactive metabolites not formed at consumer relevant exposures Low bioactivity also found in a metabolic competent cell model (HepaRG 3D) PoDs range: 41-871 µM (Table 4 and 5). 	Updated MoS 9538-9601 Preliminary MoS 706-96738

NGRA for 0.1% coumarin in face cream: Risk assessment conclusion

- The predicted C_{max} values for face cream were lower than all PoDs with a MoS (the 5th percentile) higher than 100
- Coumarin is not genotoxic, does not cause skin sensitisation, does not bind to any of the 44 targets and does not show any immunomodulatory effects at consumer relevant exposures
- Weight of evidence suggests that the inclusion of 0.1% coumarin in face cream is safe for the consumer

Concluding remarks

- NGRA is a framework of non-standard, bespoke data-generation, driven by the risk assessment questions
 - Exposure led
 - Human relevant
 - \cdot in silico
 - in vitro
 - weight of evidence
- Margin of safety is determined by the ratio of human exposure to the point of departure for the most sensitive assay
- NGRA tools are available now and research into more approaches continues

Acknowledgements

Maria Baltazar Sophie Cable Paul Carmichael **Richard Cubberley** Tom Cull Matt Dent Sarah Hatherell Jade Houghton Predrag Kukic Hequn Li Sophie Malcomber Alistair Middleton

Tom Moxon **Alexis Nathanail Beate Nicol Ruth Pendlington** Sam Piechota Julia Fentem Georgia Reynolds Joe Reynolds Nikol Simicek Andy Scott **Carl Westmoreland** Andy White

For more information on Unilever's ongoing research to develop non-animal approaches to safety assessment visit <u>www.tt21c.org</u>

#EssentialsForDailyLife Animal testing alternatives

🕒 YouTube

Animal Testing Alternatives in Unilever

