SERS - Safety, Environmental & Regulatory Science | Unilever R&D

Building confidence in regulatory acceptance of in vitro high throughput transcriptomics evaluating false positive rates across models

<u>Jacob Fredenburg^{1,2}, Joseph Bundy¹, Joe Reynolds³, Mark Liddell³, Joshua Harrill¹, Claire Peart³, Alistair Middleton³, Andrew White³, Logan J. Everett¹</u>

¹Office of Research and Development, US EPA, Research Triangle Park, NC, USA, ²Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA, ³Safety, Environmental and Regulatory Sciences (SERS), Unilever, Colworth Science Park, Bedford, UK

Background and aims

 High-throughput transcriptomics (HTTr) can be used to profile the dose-dependent bioactivity of a substance and often provides a conservative estimate, e.g., [1].

We generated "**null chemicals**" i.e., mock dose-response series where no dose-responsive behaviour is expected using TempO-seq in MCF7 cells. These profiles were generated in two ways:

Methods

- Acceptance of these methods is contingent on understanding the uncertainties and variance in both the experimental methods and the analysis workflow.
- Here we present a method to investigate the assessment of false positive rate (FPR) of several methodologies for dose-response analysis at both the probe/gene and pathway/signature level: tcplfit2 (v0.1.6), httrpathway (v0.2)+ tcplfit2, BMDExpress2 and BIFROST[2].

Figure 1. "Null chemical" generation

1) **Random sampling** of **lowest two doses** of 44 test chemicals [3]; and,

2) Random sampling from 63 **vehicle control** (DMSO) samples [4].

For each methodology 1000 null chemicals were generated (Figure 1), and "hit calls" based on previously published thresholds for each workflow were defined as false positives.

Results - False Positive Rate (FPR) estimation

Probe level

Lowest 2 Doses		All Controls		

Probe level (Figure2)

Our results show average **FPR rates <3%** for all methods with **BIFROST having the lowest FPR** in each null chemical set whereas the **other methods showed a skewed distribution** with maximum FPR ~20-50% depending on dataset

Pathway/Signature level

	Lowest 2 Doses	All Controls
100-		
(%)		

		Min	Mean	Median	Max
Lowest 2 Doses	BIFROST	0	0.004	0	0.173
	BMDX	0.331	2.778	1.744	20.584
	tcplfit2	0	1.008	0.061	24.074
All Controls	BIFROST	0	0.002	0	0.023
	BMDX	0.007	0.899	0.316	22.770
	tcplfit2	0	1.235	0.063	48.486

Figure 2. False-Positive rate distributions for each probe-level fitting method based on 1000 null chemicals (lowest two doses) and all controls BMDExpress2 (BMDX) and tcplfit2 and 100 nulls for BIFROST with control dataset.

<u>Pathway/Signature level (Figure 3)</u>

The **median for both BMDX Pathway and tcplfit2 Pathway is low** (Lowest 2 Doses – 0.435% BMDX, 0% tcplfit2- Pathway, All Controls – 0%), **the range is large in both null chemical sets (0-90+%)**. The **FPR for tcplfit2 Signature is low** on average with the means of

low on average with the means of the two null chemical sets being close (Lowest 2 Doses – 0.045%, All Controls – 0.118%). The range of FPR for tcplfit2 Signature is much smaller for both null chemical sets.

		Min	Mean	Median	Max
Lowest 2 Doses	BMDX	0	8.513	0.435	94.745
	tcplfit2-Path	0	3.701	0	96.059
	tcplfit2- Sig	0	0.194	0.045	7.307
All Controls	BMDX	0	2.363	0	97.228
	tcplfit2-Path	0	3.805	0	99.565
	Tcplfit2-Sig	0	0.183	0.118	3.789

Figure 3. False-Positive rate distributions for each pathway/signature fitting method, BMDExpress2 using pathway method (BMDX Pathway), tcplfit2 using BMDExpress2-style aggregation into pathways (tcplfit2 Pathway) and Httrpathway + tcplfit2 (tcplfit2 Signature). BIFROST generated too few hits on all null chemicals to perform BMDExpress2-style aggregation.

Characterisation of FPR

Conclusions

Figure 4 (below right). Distributions of median probe expression within null chemicals group by FPR hit calls.

In each null chemical set, probes which were called a hit tended to have a similar average expression compared to those that were never called a hit.

1: Paul Friedman, et al. Tox Sci 2020. DOI:10.1093/toxsci/kfz201 2: Reynolds, et al. Com Tox 2020 DOI:10.1016/j.comtox.2020.100138 3: Harrill, et al. Tox Sci 2021. DOI: 10.1093/toxsci/kfab009 4: Middleton, et al. Tox Sci 2022. DOI: 10.1093/toxsci/kfac068

- At probe level: low average FPR with a subset of null chemicals showing elevated FPR in all methods except BIFROST. This was the case in both datasets and is therefore unlikely to be a result of some wells having residual activity.
- At pathway/signature level: aggregating the data after dose-response analysis leads to higher FPR than performing dose-response on signatures (httrpathway + tcplfit2)
- Our results indicate that using the lowest two doses in this design is suitable for FPR estimation and suggest that "null chemicals" can be used to establish chemical-level bioactivity thresholds.
- FPR rates are not driven by lowly expressed probes
- FPR alone should not be used to select or optimise a method

seac.unilever.com

This poster does not necessarily reflect US EPA policy. Company or product names do not constitute endorsement by US EPA.