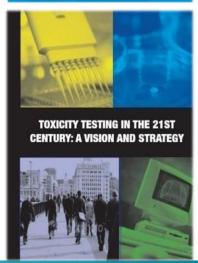


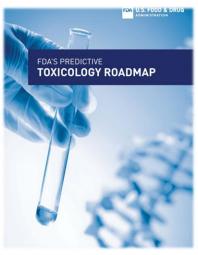
Case studies for assuring safety without animal testing

Maria Baltazar, Paul Carmichael

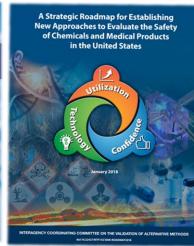
Safety & Environmental Assurance Centre, Unilever

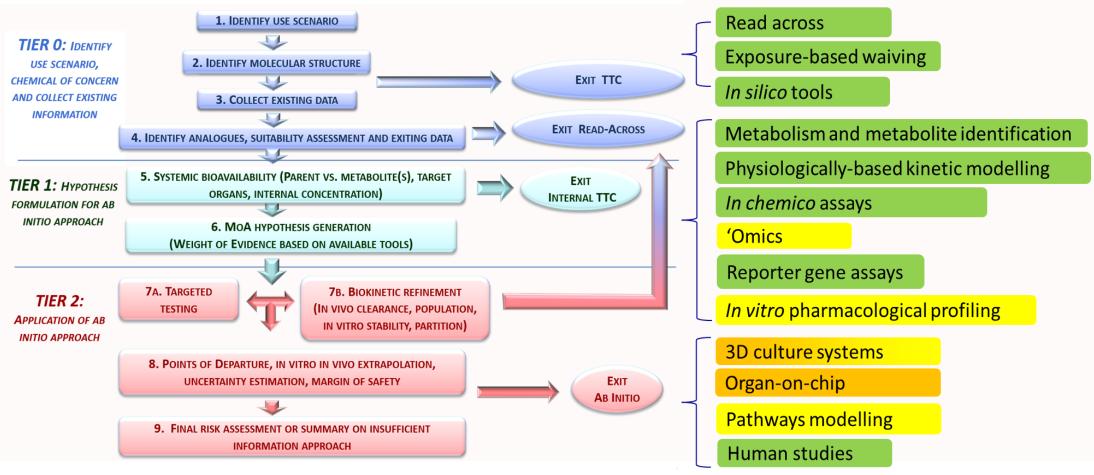
3rd February 2021


Next Generation Risk Assessment (NGRA)



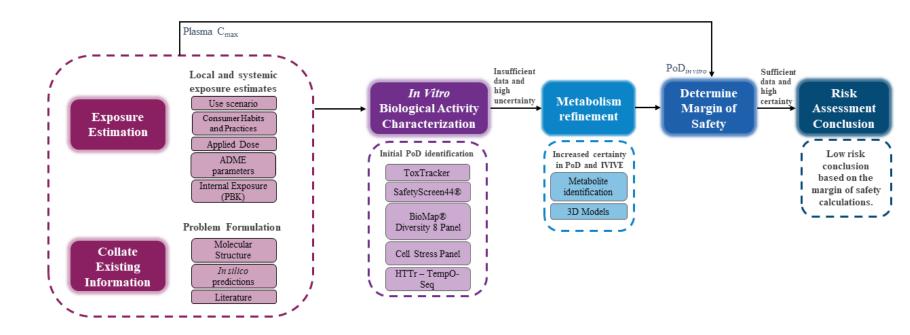
Safety without animal testing





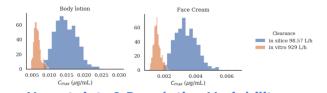
Next Generation Risk Assessment (NGRA)

Computational Toxicology (2017) 4, 31-44


Case Study Approach... Imagine we have no data for: Coumarin

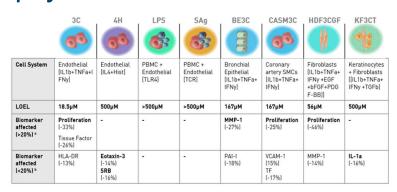
Safety assessment for **0.1% coumarin in Face Cream**

Safety assessment for **0.1% coumarin in Body Lotion**



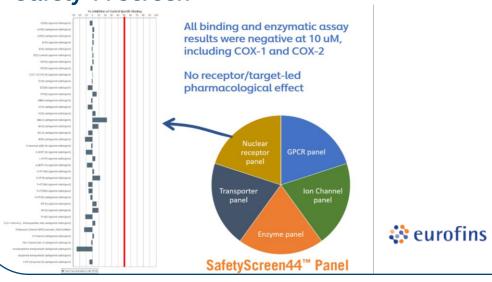
Toxicol Sci. (2020) **176**, 236–252

PBK Modelling


Total Plasma C _{max} (µM)	Mean	Median	90th percentile	95th percentile	97.5th percentile	99th percentile
Face Cream	0.0022	0.0021	0.004	0.0043	0.0046	0.005
Body lotion	0.01	0.01	0.018	0.019	0.02	0.022

Uncertainty & Population Variability

Toxicology in Vitro (2020), 63, 104746


BioMap Systems

Biological readouts associated with anti-proliferative and tissue remodelling activities across all cell systems. No immunomodulatory effects at relevant concentrations

Data suggest that coumarin is not an anti-inflammatory compound

Safety 44 Screen

Stress Pathways

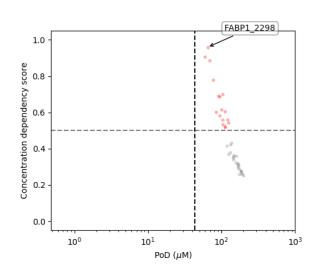
~40 Biomarkers; 3 Timepoints; 8 Concentrations; ~10 Stress Pathways

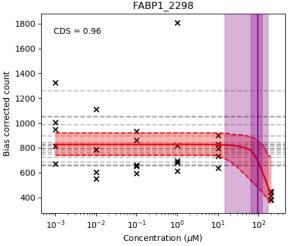
•		-	
Biomarker	Cell type	Stress pathway	PoD
			(μM)
ATP (6h)	HepG2		794 (363-977)
		cell health	
ATP (24h)			617 (282-891)
Phospholipidosis (24h)	HepG2	cell health	759 (437-977)
GSH (24h)	HepG2	oxidative stress	851 (301-1000)
IL-8 (24h)	HepG2	inflammation	912 (575-1000)
OCR (1h)			62 (2.6-776)
OCR (6h)	NHEK	mitochondrial toxicity	468 (214-794)
OCR (24h)			309 (138-1000)
Reserve capacity (1h)			44 (23-96)
Reserve capacity (6h)	NHEK	mitochondrial toxicity	759 (302-1000)
Reserve capacity (24h)			794 (295-1000)

Cerep

Toxicol Sci (2020), **176**, 11-33

In Vitro Bioactivity: Tempo-Seq Technology




Computational Toxicology
Volume 16, November 2020, 100138

High Throughput Transcriptomics (HTTr)

- Coumarin dose range 0.001uM to 100uM
- 24 hour time point
- QC and normalisation in DESeq2
- BMDExpress2 applied to determine NOTEL (3 pathway approaches)

A Bayesian approach for inferring global points of departure from transcriptomics data

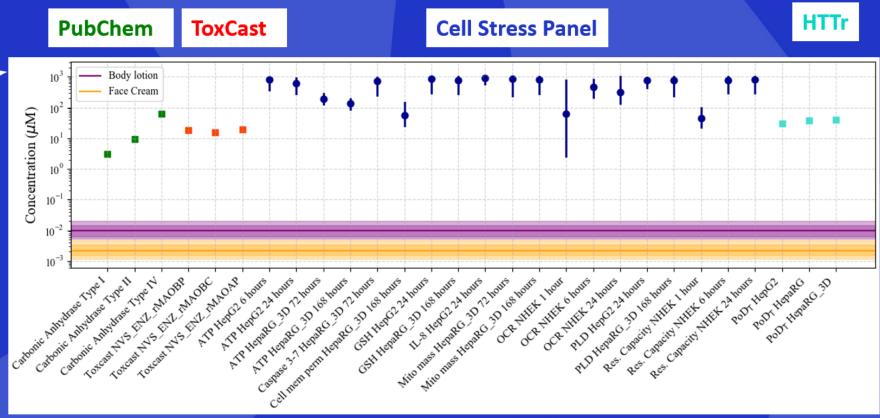
Joe Reynolds A ☑, Sophie Malcomber, Andrew White

- Bayesian approach to estimate maximum no effect concentration published in 2020 (Reynolds et al. 2020)
- Method applied to multiple HTTr datasets generated with coumarin

Cell type	Global PoD (µM)		
HepaRG	7.2		
HepG2	6.7		
MCF7	5.9		
HepaRG	62		
HepaRG (3D)	44		

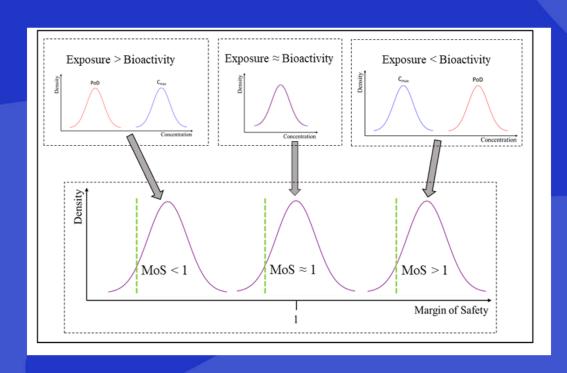
Comp Toxicol. (2020) 16, 100138

Margin of Safety considering PODs and Exposure

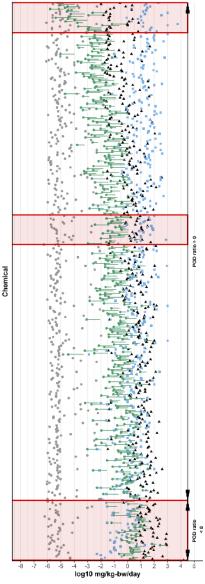

PoDs and plasma C_{max} (µM) are expressed as total concentration

C_{max} expressed as a distribution:

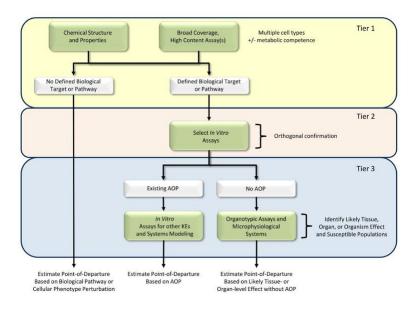
- Line = median (50th percentile)
- Inner band = 25th-75th percentile
- Outer band = 2.5th-97.5th percentile (95th credible interval)



Application of Ab Initio Approach: NGRA


Margin of safety is the fold difference between the Cmax and the *in vitro* POD

Technology	Cell line/ Enzyme/Biomarker	Face cream Min. 5th percentile MoS	Body Lotion Min. 5th percentile MoS
Cell stress panel	HepG2 (ATP, 24h)	96738	22048
Cell stress panel	NHEK (OCR 1h)	1330	295
HTTr	HepG2 (24h)	7223	1618
HTTr	HepaRG (24h)	8864	1986
Toxcast	MAO B	3711	831
PubChem	Carbonic Anhydrase Type I	706	158
PubChem	Carbonic Anhydrase Type II	2140	479
PubChem	Carbonic Anhydrase Type VI	14652	3282
Cell stress panel	HepaRG_3D (cell mem perm 168h)	9601	2197
HTTr	HepaRG_3D_24h	9538	2137

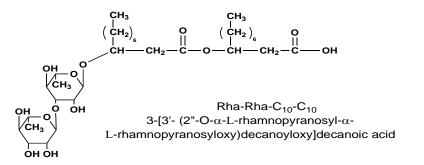

doi: 10.1093/toxsci/kfz201 Advance Access Publication Date: September 18, 2019 Research Article

Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization

Katie Paul Friedman ,** Matthew Gagne, † Lit-Hsin Loo, † Panagiotis Karamertzanis, § Tatiana Netzeva, § Tomasz Sobanski, § Jill A. Franzosa, ¶ Ann M. Richard, * Ryan R. Lougee, * Madrea Gissi, § Jia-Ying Joey Lee, † Michelle Angrish, III Jean Lou Dorne, IIII Stiven Foster, # Kathleen Raffaele, # Tina Bahadori, III Maureen R. Gwinn, * Jason Lambert, * Maurice Whelan, ** Mike Rasenberg, § Tara Barton-Maclaren, † and Russell S. Thomas * **

"The primary objective of this work was to compare PODs based on high-throughput predictions of bioactivity, exposure predictions, and traditional hazard information for 448 chemicals"

Toxicol Sci (2019) 169, 317-332



An NGRA Example from a Homecare Product

NGRA included:

- Detailed consumer exposure work
- *In vitro* skin penetration work
- Understanding metabolism
- *In vitro* immunotoxicity assessment

Conclusions

Non-animal safety assessments for consumer goods are moving from 'might be possible in theory' to 'case studies of NGRA in action'

NGRA is a framework of non-standard, bespoke data-generation, driven by the risk assessment questions

- Enabling a transition from using data from tests in live animals to one founded on understanding the effects of chemicals in humans using computational approaches and in vitro methods that evaluate changes in biologic processes using human cells
- Need to ensure quality/robustness of the non-standard (non-TG) work
- More published examples to increase confidence for regulatory application e.g.
- Importance of characterising uncertainty to allow informed decision-making
- Shortcomings will be addressed by current and future research; NGRA will constantly evolve.

(A)) OFCD

Acknowledgements

Maria Baltazar Catherine Barratt Sophie Cable Paul Carmichael Stella Cochrane Richard Cubberley Tom Cull Claire Davies Mona Delagrange **Matt Dent** Julia Fentem Tom Green Sarah Hatherell Jade Houghton

Predrag Kukic

Juliette Pickles

Mi-Young Lee

Hequn Li

Sophie Malcomber **Deborah Martin Gavin Maxwell Alistair Middleton** Alexis Nathanail Tom Moxon **Beate Nicol** Ruth Pendlington Sam Piechota Fiona Reynolds Georgia Reynolds Joe Reynolds Paul Russell Nikol Simecek **Andy Scott** Ian Sorrell **Andy White**

