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1. Introduction

Next Generation Risk Assessment (NGRA) is an exposure-led,

hypothesis-driven risk assessment approach that integrates New Plasma C
Approach Methodologies (NAMs) to assure safety without the use of
animal testing. Over recent years several theoretical frameworks

depicting a tiered and iterative approach to conducting a NGRA have Exposure
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been published [Berggren et al, 2017; Dent et al, 2018], although
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In this study we conducted a hypothetical safety assessment of 0.1% Collate
coumarin in a face cream and body lotion using only NAMs to inform Existing

a safety decision, focusing on the potential for systemic toxicity ilonpess PoD
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Figure 1. Example framework implemented for the hypothetical risk assessment of coumarin in face cream and body lotion using NAMs.

2. Exposure Estimation

Applied dose estimates can be calculated using representative usage amounts for each Body lotion Face Cream
. product type and typical physiological data for consumers. However to facilitate comparison 60
Local and systemic i in vitro points of departure (PoDs) an internal consumer exposure can be estimated using o Clearance
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pCerlmeterS Y, Table 2. Internal Exposures From Use of 0.1% Coumarin in Face Cream and Body Lotion Following the Exposure Scenario Outlined in Table 1
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Exposure (PBK) | lotion use scenarios and can be seen in Fig.2. The final output for coumarin shows possible
distributions at two different clearance rate (in silico and in vitro) to visualise the impact this
parameter can have on the predicted C,,,, and standard deviation.

~ Body lotion 0.01 0.01 0.018 0.019 0.02 0.022

Face cream 0.0022 0.0021 0.004 0.0043 0.0046 0.005
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4. Conclusions

Det . Bioactivity Exposure Ratios compare the distribution of the exposure estimates with the distribution of the
.e ern.“Fe calculated PoDs. The data below show that the 5t percentile of the BER distribution ranged between 158 and
Bioactivity 967387.

Exposure Ratio

From the data presented above it can be concluded that Coumarin is not

genotoxic, does not bind to any of the 44 SafetyScreen targets, shows low
bioactivity in the test systems and does not show any immunomodulatory
Risk effects at consumer relevant exposures.

LY Face cream Tt t rTrTtTTT et ot
o Assessm.ent Whilst there is not yet agreement on how large a BER should be to assure
Conclusion human safety, the predicted Cmax values for face cream and body lotion
were all at least 100 times lower than all the recorded PoDs. In conclusion,
the weight of evidence suggests that the inclusion of 0.1% coumarin in these

products would be low risk to a consumer.
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