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CONCEPT AND OVERVIEW

A critical question for risk assessors and regulators today is whether safety assessments
based on non-animal data can be protective of human health. One important way of
establishing scientific confidence in decision making using non-animal methods is through
large scale data-driven projects across a broad range of chemistries and biology. In
Middleton et al (2022)! we proposed a way to evaluate an early tier workflow for use in
systemic safety decision making.

This workflow consisted of three modules as outlined in Fig.1:
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RESULTS - non-animal toolbox 100% protective
for high-risk chemical exposure scenarios

A pilot study was conducted using 10 chemicals and 24 benchmark exposure scenarios, with a
risk classification defined for each chemical-exposure scenario. This work allowed for
optimisation of the test systems and of the data analysis process, but also worked to define a
method for conduction a larger scale evaluation. A BER threshold was determined above
which it is likely that the chemical exposure scenario is low risk.

Fig.2. shows the results of this pilot study with high risk exposure scenarios coloured in yellow
and low risk exposure scenarios coloured in blue. As expected there is some overlap in the
BERs calculated for both high and low risk scenarios but a threshold could be set based on the
different inputs above which the likelihood of a scenario being low risk was > 95%. At PBK
level 2 (in vitro parameter inputs) a BER threshold of 11 meant that all high risk exposure
scenarios had a smaller BER calculated and all exposure scenarios with a value > 11 were low
risk from a consumer perspective.
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Fig.1. A proposed workflow for integration of exposure and bioactivity s ;
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data for safety decision making.

Fig.2. Calculated BER values for 24 chemical exposure scenarios as determined using the modules and workflow
shown in Fig.1. High risk chemical exposure scenarios are shown in yellow, low risk chemical exposure scenarios
are shown in blue. The bars represent the 95% confidence interval of the calculated BER when considering
uncertainty in the exposure estimate. The red dotted is at BER = 11, the black dotted line shows a BER =1 to
visualise the conceptual approach to interpreting the BER values in the context of benchmark chemical exposure
scenarios.

However there has been limited work up to this point to evaluate if this concept holds
true in real cases. The results of this pilot study were used to define a threshold for
benchmark chemicals at which all exposure scenarios with a greater BER would be
considered low risk.
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104 shortlisted chemicals across the different use categories that meet the minimum
information requirements.
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The chemical has a specific mode of action not picked up in our test
systems:
- Warfarin specifically interacts with VKORC1 which is not present in

The final selection of chemicals that met all the criteria included 9 chemicals primarily associated with cosmetic use,
21 primarily associated with medicinal use, 3 associated with food exposures, 5 agricultural chemicals and 1 primarily
associated with occupational use. A key question of using low tier, broad screening approaches, such as those that
comprise this toolbox, is whether they provide enough coverage to be used for ab initio non-animal risk assessments.
One way to look at assessing the coverage provided by this workflow is through mapping the diversity of the chemical
and biological space provided by the choice of test chemicals.

- The exposure estimate is a significant overestimate of the likely in vivo
exposure and more data would be needed to refine this.
- E.g. not all dermal exposure scenarios had good quality dermal
penetration data available and so a default of 100% was assumed.
- The concentration-response analysis method used is overly sensitive
and does not correct for all false positives
- This is likely to be the case for examples like panthenol where the
BER is being driven by a small number of genes with low level
responses.
- The test systems are broadly conservative and require interpretation in

any of the test systems that make up this toolbox. Literature data is
available for warfarin in this assays which, if integrated into the
workflow, would give a BER of 0.088

The Cmax estimate calculated at L2 is an underestimate of the in vivo
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the context of the full weight of evidence risk assessment/IATA, which
has not been considered in this early tier evaluation. At this stage, if
required, the assessment could progress in a tiered and iterative way in
line with the ICCR principles?, generating data in higher tier models or
working to address remaining sources of uncertainty.
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