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» Methods:

= SegAPASS uses protein sequence information to evaluate chemical target conservation
across species to support predictions of species susceptibility to chemical exposure?.

= G2P-SCAN uses biological pathway, gene orthology, and protein family information to
support predictions of pathway conservation across 7 species: humans (H. sapiens), o
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HTP tPOD = High-throughput transcriptomic point of departure
EPA = Environmental Protection Agency
RCSB PDB = Research Collaboratory for Structural Bioinformatics Protein Data Bank
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Topiramate acid receptor subunit  GABRAL %001 50 €1y jice ) bindin » (1) The top ten scoring proteins connected to PPARA within the PPI network for the “Activation of
alpha-1 precursor B ~ domanm (pfam02831) A gene expression by SREBF” (R-HSA-2426168) pathway are identified and then (2) evaluated using
SegAPASS. (3) The susceptible species across each of the resulting protein lists were merged.
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ESR1, PPARA, or GABRA1 as a G2P-SCAN input. (B) Bar plot of the pathway coverage
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Summary & Conclusions

» In combination, it was demonstrated through the use of three case examples that these tools can be used to:
= Expand the prediction of biological pathway conservation across all species with relevant protein data (several additional lines of evidence are generated through the use of G2P-SCAN with respect to the 6 model organisms)
= Aid in the prediction of cross-species chemical susceptibility
= Potentially extend the biologically plausible tDOA of relevant AOPs
= Provide additional biological information to help further characterize certain KEs and KERs
» The three case examples used here helped identify areas for improvement for this approach:
= Additional factors such as life stage, life history, biological sex, and toxicokinetic factors like absorption, distribution, metabolism, excretion (ADME) may be incorporated to yield a more complete understanding of the chemical exposure and resulting biological
Impacts
= Incorporation of quantitative pathway information through the use of (high-throughput) transcriptomics or proteomics would allow for pathway topology evaluations for molecular target and pathway prioritizations

References / Acknowledgements

(1) Judson, R., Richard, A., Dix, D. J., Houck, K., Martin, M., Kavlock, R., Dellarco, V., Henry, T., Holderman, T., Sayre, P., Tan, S., Carpenter, T., & Smith, E. (2009). The toxicity data landscape for environmental chemicals. Environmental Health Perspectives, 117(5), 685-695. https://doi.org/10.1289/EHP.0800168

(2) LaLone, C. A,, Villeneuve, D. L., Lyons, D., Helgen, H. W., Robinson, S. L., Swintek, J. A., Saari, T. W., & Ankley, G. T. (2016). Sequence alignment to predict across species susceptibility (segapass): A web-based tool for addressing the challenges of cross-species extrapolation of chemical toxicity. Toxicological Sciences, 153(2), 228-245.
https://doi.org/10.1093/toxsci/kfw119

(3) Rivetti, C., Houghton, J., Basili, D., Hodges, G. and Campos, B. (2023), Genes-to-Pathways Species Conservation ANalysis (G2P-SCAN): enabling the exploration of conservation of biological pathways and processes across species. Environ Toxicol Chem. Accepted Author Manuscript. https://doi.org/10.1002/etc.5600


https://seqapass.epa.gov/seqapass/

	Slide 1

