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1. Background and Aim: A)  Nitsche et al, 1982 (IV 1000 mg) B) Georgoff etal, 2017 (IV 2151 mg) C) Nitsche et al.,, 1982 (Multiple Oral dose- 900 mg/12 hrs)
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Fig.3: Comparison of VPA healthy volunteer PBK model predictions with clinical data. A healthy VPA PBK model was created using input parameters from table 1 and
VPA is an established human teratogen with a plethora of human clinical pharmacokinetic (PK) studies compared to clinical data for single IV exposure (A,B) as well as multiple oral dosage (C).
including sparse pregnancy PK studies.
9 P Preg y A healthy volunteer VPA PBK model was created and compared to outcomes form clinical studies. The model predicted the observed AUC and Cmax

No human PK studies are available for 2-EHA. To fill this data aap the aim of this work was to develo seen in clinical studies very well (see Fig.3) with a total fold error within 0.9-2.3-fold. Similar results were seen for comparing pregnancy VPA PBK models
parameterise and validate a mother-foetus I;BK model for 2-EgHKbased on the structurally similar Pa’ with maternal serum concentrations in 15t and 2"9 trimesters which are in good agreement with the observed clinical outcomes and are below a fold
analogue VPA (a PBK read-across). The overall approach is shown in flowchart below. error of 2 (data not shown).
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nopulation PBK : POF:;' |a I'_:’" s (IR suspension, Fed) Fig.4: PBK model for VPA for maternal, foetal and population exposure A) An individual mother’s predicted serum PK profile (at the time of delivery) superimposed
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" et ot placental and amniotic fluids) full PK profiles at 25 mg/kg dose. C) Multiple dose mother’s serum simulation output for VPA virtual pregnancy population.
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MF placenta- Permeability limited A VPA pregnancy PBK model was created using GastroPlus which show good overlap with observed individual mother’s serum concentration (Css) (see
A | Fig.4 A) However this model underpredicted the foetal cord serum conc. (see Fig.4 A and table 4) estimating a foetal cord serum: mother serum (FM)
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Fig.1: Flowchart for PBK-read across between VPA and 2-EHA.
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2. Methodology: N ‘
Note: Individual Fup considered, 31 mg/kg=30; 25 mg/kg=35; 26.7 mg/kg=35; 25.8 mg/kg=25.
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Table 4: Measured and predicted maternal serum and foetal cord serum concentrations for VPA.

Mol wt (g/mol) 144.21 PubChem 144.21 PubChem
Log P 2.75 PubChem 2.64 PubChem Using read across a PBK model can be built for 2-EHA that allows reliable predictions to be made for healthy/non-pregnant and maternal Cmax values.
Solubility (mg/ml) 1.35 DrugBank (FDA label) 1 PubChem Predictions for foetal exposures are less reliable as the PBK model for VPA underpredicted the observed FM ratio. These Cmax calculations will be useful
pKa (acid) 4.8 PubChem 4.8 PubChem for comparing with in vitro Point of departure (POD) values to derive a Bioactivity Exposure Ratios (BERs) which can be used in a Next generation risk
Fraction unbound in plasma (Fup) 7-15% Cloyd etal., 2003 13.16% JRC report assessment (NG RA) approach.
Blood to plasma ratio (B/P) ratio 0.55 Soars etal., 2002 0.55 Assumed (OECD report)
Human Caco-2 assay: Pappa (10E-4 cm/s) 0.22 Torii etaal., 2002 0.55 Wu et al., 2023 A) 0.042 2-EHA B) Population Simulation: 2-EHA
Human Intestinal effective permeability- 3.84 Conner et al., 2018 1.17 G+ predicted (QSAR method) 0.041 [p = —_— |
Peff (10E-4 cm/s) zggz
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Pregnancy related ADME changes for VPA (see table 2) were also extracted from literature and used for 0.0084 cerets © 0.006
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(fraction VPA highly water soluble ; rapidly absorbed from the gut and sodium salt from the
absorbed) intestine
% Plasma Albumin & al-acid glycoprotein {, correlates positively with 1 with gestational age Normal or 1< trimester (TM): 93-85% (Fup: 7-15%) Nau et al., 1981 Fig.5: PBK model for 2-EHA A) Predicted mothers and foetus (plasma, placental and amniotic fluids) full PK profiles at 3.1 Table 5: Predicted maternal serum and
tei 274 TM: 85-80% (Fup: 15-25%) o Vs o o o o o .
b d?r:’g‘ R I RN O S T N [ [F:‘;’: ey mg/day dose. B) A single dose mother’s serum simulation output for 2-EHA in a virtual pregnancy population. foetal cord serum concentrations for 2-
4 during pregnancy EHA.
J. Protein binding capacity results in P plasma clearance . total serum levels 4. Challenges:
Fraction Total VPA levelsfalls but free fraction during pregnancy 1 Serum protein binding of VPA is sig. J, in preg women
unbound in upto 2 fold 4* in free fraction . . . . .
plasma (Fup) a. For robust PBK read across, the source chemical should have full PK profiles in the non-pregnant and ideally pregnant population. However, the
Steady state Plasma volume by 50%; Cardiac output 1 by 30% | Vd 1 with 4 in extracellular fluid , fat content and Nauetal., 1981 ethical concerns associated with studies that sample placenta, fetal organs, or systemic circulation during pregnancy for PK will always mean that
volume of Total Body fluid ™ with intravascular volume and extracellular fluid expanding foetal compartment . . . . . . . . . . . .
distribution - | o | | | published datasets in this space will be scarce. Likewise, levels of fetal drug exposure remain difficult to quantify from published information, as data
(Vss) VPA distribute to all tissues & present in high conc. —blood, liver and kidney Apparent Vd 0.14-0.20 L/kg in adults from the fetus O.nd placenta Wll.l. O.I.qus be lImItEd tO post_dellvery measurements.
Clearance 1 progesterone - hepatic enzymes; estrogens are inhibitors (large interindividual Clearance increased significantly (approx. 3 times) from Koerner et al., 1989
(CL) variations due to varying ratios of hormones among the individual) 15T TMto 3 TM
A renal clearance and metabolic capad R b. In the pregnancy PBK read across, only partial validation of the predicted mother’s serum or foetus cord serum is feasible. Published data on fetal and
pacity and * in tissue binding ) ] - ) . . . . .
Table 2: Pregnancy related ADME changes for VPA. maternal plasma rqtlo .measu.rements are challenging to use in this work, as only one sample can be obtained per subject within a short time frame
and the sampling time is relative to the last maternal dose taken.
Parameters incorporated for pregnant and foetal PBK modelling:
c. The PBK predictions of foetal exposure to chemicals could be improved by better understanding and parameterisation of placental transfer including
« Based on Nau (1981) plasma protein binding (PPB) or Fraction unbound in plasma (Fup of VPA accounting for the abundance of placental enzymes and the interplay of influx or efflux transporters on the basolateral membrane of placenta. E.g.,
literature studies indicated the role of proton dependent monocarboxylic transporters in the transport of ionized VPA from mother to foetus

changes throughout pregnancy. 1stTrimester (TM): 93-85% (Fup- 7-15%); 2"d TM: 85-80% (Fup-15-25%);
3rd TM: 75-65% (Fup-25-35%) was considered. As a result, the systemic clearance (CL) and volume of

distribution (Vd) calculated in the PBK model (GastroPlus®) also changed.
d. For better foetus exposure predictions, further optimisation, and incorporation of measured blood to placental partitioning coefficient (Kp) and
placental permeability surface area product (PStc) in the Pregnancy PBK model is required.

compartment (Ishiguro et al., 2018).

* For the VPA/2-EHA pregnancy model, a placental permeability limited tissue model was applied, and
the estimated permeability surface area product (Pstc) of 15000 ml/s was used to capture the foetal

plasma concentration profile. 5. Conclusions: This PBK read across assisted in the mechanistic understanding of the ADME processes of 2-EHA i.e., the identification and assigning

. The VPA Pregnancy model was validated against observed individual maternal serum and foetal cord the u1i1cer,ta|.nty of iche most sensitive physiological po.trar’nete.r—. the Fup for the pregnant population. This allowed building some confidence in the target
chemical’s simulation outputs based on source chemical’s clinical PK datasets.

blood concentrations.
6. Future studies: 1o better predict the asymmetric distribution of VPA or 2-EHA across the mother and foetus compartment, advanced cellular test

* For the PBK read across from VPA to 2-EHA, for 2-EHA specific Fup, Caco2 assay based apparent | <y stem to characterise the kinetics of placental transfer, e.g. placenta-on-chip models or cell line-based models (such as BeWo) transfected with the
permeability (Papp) and hepatocytes intrinsic clearance (CLint) values were changed. transporters should be developed.
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(2-EHA) compound for which probability distribution range needs to be considered to account for the
interindividual variabilities in both the virtual non-pregnant and pregnant population.
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