
SEAC | Unilever

seac.unilever.com

Evaluating a systemic safety toolbox for use in Next Generation Risk Assessment

Alistair Middleton, Maria Baltazar, Joe Reynolds, Beate Nicol, Gopal Pawar, Fazila Bunglawala, Dawei Tang, Sharon Scott, Sophie Malcomber, Sarah Hatherell, Predrag Kukic, Matt Dent, Andrew White, Georgia Reynolds, Paul Carmichael, Sophie Cable1

1 Unilever’s Safety and Environmental Assurance Centre, Colworth Science Park, MK44 1LQ

CONCEPT AND OVERVIEW

A critical question for risk assessors and regulators is whether safety assessments based on non-animal data can be protective of human health. One 
important way of establishing scientific confidence in decision making using non-animal methods is through large scale data-driven projects across a 
broad range of chemistries and biology. Here we show the results of an evaluation activity of a core toolbox of in vitro assays and a risk assessment 
workflow for decision making using benchmark chemical exposure scenarios to interpret the performance of the toolbox and workflow. 

The core components of this NAM-based NGRA workflow are: 

❑Estimation of internal exposure using different levels of input parameters to build the physiologically-based kinetic (PBK) models. Plasma Cmax 

values are estimated for every chemical-exposure scenario using either in silico only parameter estimates (L1), in vitro parameters from experimental 
data where available (L2), or calibrated model estimates using human clinical data (L3). 

❑Estimation of a bioactivity point of departure (PoD) was done across 3 different assays set ups consisting of the investigation of 63 specific 

protein targets (GPCRs, ion channels, enzymes etc.) as well as cellular stress mechanisms and effects on the transcriptome of 3 cell lines (HepG2, 
HepaRG, MCF7). Bayesian statistical models were built to analyse the cellular stress and transcriptomics data in a concentration-response manner and 
establish the most likely concentration at which an effect begins, thus determining a bioactivity platform PoD.

❑Calculation of a Bioactivity Exposure Ratio (BER) combines inputs from the exposure and bioactivity assay modules, calculating the ratio 

between the plasma Cmax estimates and the lowest platform PoD. 

METHODS

• A pilot study was conducted using 10 chemicals with 24 identified exposure scenarios classified as high or low risk from a systemic toxicity perspective. 

Data were generated in the 3 core bioactivity platforms and PBK models built to estimate plasma Cmax levels. 

• The pilot study was used to optimise the experimental design of the assays (e.g. plate layouts, choice of control chemicals) and to determine BER 

thresholds above which a confident low risk decision could be made. Analogous to the margin of safety approach where it is typically considered that a 

MoS > 100 represents low risk. 

• For the full evaluation 38 chemicals were selected with the aim to avoid bias from selection of only highly toxic or inert chemicals, to cover a broad 

range of chemistries and biologies, and chemicals with definable exposure scenarios that could be classified as high or low risk using traditional 

toxicological approaches. 

• Data were generated across the same bioactivity platforms as the pilot study and the performance assessed in terms of protectiveness and utility. 

• PoDs from in vivo studies (traditional PoDs) were also identified for a subset of the evaluation chemicals and compared to the NAM PoDs. These 

included subchronic/chronic NOAELs, and in the case of Ketoconazole an adjusted 28-day NOAEL. The same activity was performed in that a minimum 

PoD was taken and compared to the external exposure estimates (in mg/kg bw/day) and the same performance metrics derived.  

PILOT STUDY Results

Fig.2. Calculated BER values for 24 chemical exposure scenarios 
as determined using the modules and workflow shown in Fig.1. 
High risk chemical exposure scenarios are shown in yellow, low 
risk chemical exposure scenarios are shown in blue. The bars 
represent the 95% confidence interval of the calculated BER 
when considering uncertainty in the exposure estimate. The 
black dotted line shows a BER = 1 to visualise the conceptual 
approach to interpreting the BER values in the context of 
benchmark chemical exposure scenarios.

Separation of the high and low risk scenarios was achieved, which 
was to be expected given the high potency and relatively inert 
nature of the chemicals and use scenarios identified at this stage. 

Uncertainty in the plasma Cmax estimates meant that the range for 
each BER plotted lead to some overlap for both high and low risk 
scenarios. 

A threshold was set based on the different PBK inputs above 
which the likelihood of a scenario being low risk was > 95%. At 
PBK level 2 (in vitro parameter inputs) a BER threshold of 11 
meant that all high risk exposure scenarios had a smaller BER 
calculated and all exposure scenarios with a value > 11 were low 
risk from a consumer perspective.

Exposure Estimation
In Vitro Bioactivity Data 

Generation

BER Calculation

Plasma Cmax (µM) Minimum PoD (µM)

PBK Input Threshold BER 

required for exposure 

scenario to be 

identified as low risk 

Probability of 

overturning

In silico only (Level 1) 110 0.1

At least one in vitro 

parameter (Level 2)

11 0.1

Calibrated to clinical 

data (Level 3)

2.9 N/A

Table 1. BER Thresholds for different PBK levels derived from the 
pilot study. Corrected from Middleton et al., 2022

FULL EVALUATION RESULTS

• The final selection of chemicals that met all the criteria included 9 chemicals 
primarily associated with cosmetic use, 21 primarily associated with medicinal 
use, 3 associated with food exposures, 5 agricultural chemicals and 1 primarily 
associated with occupational use. 

• 2 of these were inhalation exposures, 7 IV exposures, 11 dermal exposures and 
44 oral. 

• For 1,2-Octanediol, Ethylzingerone, Panthenol and Cypermethrin, no in vitro 
ADME data were available, and therefore only L1 PBK models could be built. 

 

• The toolbox and workflow are 93% protective for high 
risk chemical exposure scenarios. This increases to 98% 

protective when clinical data are used to calibrate the PBK models where 
available.

Fig.3. Plot showing the BER values determined for all chemical 
exposure scenarios using PBK models parameterised using in vitro 
data and the lowest PoD across all the bioactivity platforms tested 
(orange dots – high risk exposure scenarios, blue dots – low risk 
exposure scenarios). 

PROTECTIVENESS:

Does the toolbox workflow identify all high-risk exposure scenarios as not low risk, i.e. BER < 11?

Of our test chemical exposure scenarios, 93% of the high risk 36 benchmark scenarios would also be 
classified as not low risk (i.e., uncertain risk) using this approach.

Potential reasons for lack of protectiveness: 

- The chemical has a specific mode of action not picked up in our test systems:
- Warfarin specifically interacts with VKORC1 which is not present in any of the test systems that 

make up this toolbox. Literature data on the binding of warfarin is available in the literature, which 
if integrated into the workflow would give a BER of 0.088

- The Cmax estimate calculated at L2 is an underestimate of the in vivo exposure
- The current L2 definition does not specify which parameters need to be derived experimentally, 

key parameters could be in silico and this might not be reflected in the error calculated under the 
assumption of an L2 prediction

- The chemical might rely on active transport to enter cells, which isn’t reflected in the PBK model 
without specific information. This is the case for Digoxin where the L2 prediction underestimates 
the L3 value by more than 50 times due a lack of consideration of transporters. 

UTILITY:

 Does the toolbox workflow identify all low-risk exposure scenarios as low risk, i.e. BER > 11?

Of our test chemical exposure scenarios, 5 of the 21 classified as low risk from the literature would be 
classified as low risk using this approach. This gives the current toolbox a utility of 24%. 

Potential reasons for lack of utility:

- The exposure estimate is a significant overestimate of the likely in vivo exposure and more data would 
be needed to refine this. 

- E.g. not all dermal exposure scenarios had good quality dermal penetration data available and so a 
default of 100% was assumed.

- The concentration-response analysis method used is overly sensitive and does not correct for all false 
positives

- This is likely to be the case for examples like panthenol where the BER is being driven by a small 
number of genes with low level responses.

- The test systems are broadly conservative and require interpretation in the context of the full weight of 
evidence risk assessment/IATA, which has not been considered in this early tier evaluation. At this 
stage, if required, the assessment could progress in a tiered and iterative way in line with the ICCR 
principles4, generating data in higher tier models or working to address remaining sources of 
uncertainty.

In vivo data were identified for 25 of the test chemicals. The data were extracted from Toxval and curated 
so that the minimum NOAEL of the repeat dose studies was taken forwards. 
Setting an acceptable threshold at an MoS >100, using the in vivo data in an early tier manner gives a 
protectiveness of 91% (21 out of 23) and a utility of 47% (8 out of 17). For the same subset of chemicals, 
the NAM-based NGRA toolbox gives comparable performance metrics albeit with a higher protectiveness 
(97%). 

As the risk classifications are set based on the traditional data and the opinions of authorities or 
regulators, the fact that so many of the low risk benchmarks fall below the threshold demonstrates that 
a higher tier approach to the available data is often required. In these cases that could be through 
discounting effects seen that were not relevant for humans, adjusting the acceptable threshold for an 
MoS based on toxicokinetic or toxicodynamic information or taking a weight of evidence approach to all 
the data available. 

Therefore the use of NAMs in early tier assessment should be considered in the same light, and higher 
tier testing considered to improve the utility of a safety decision making framework based on in vitro 
exposure and bioactivity data. 
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COMPARISON TO USE OF TRADITIONAL DATA IN EARLY TIER ASSESSMENT

Fig.3. Plot showing the MoS values comparing the external applied doses (mg/kg bw/day) to the minimum traditional 
NOAEL for chemicals where appropriate in vivo data were available. Blue dots represent low risk benchmark scenarios, 
orange dots represent high risk benchmark exposure scenarios, the black dotted line is plotted at MoS =1 and the blue 
shaded region represents the area where the MoS > 100.

Fig.1. Summary of how the BER is calculated using exposure and 
bioactivity data
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