Electrophilic and oxidative stress:
molecular basis for interindividual variability?
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Adverse Outcome Pathway for Skin Sensitisation

----------------------
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The Dynamics of Haptenation by DNCB in living HaCarT cells
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Typical DNCB haptenated proteins in HaCaT cells

Imagery: NEXU Science Communication
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Worthy of investigation?

Annexin Il

Phase Il metabolism
Lipid peroxidation
Reversibility

Nrf2 activation
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Phase Il metabolism examples
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Reaction Proposed associated

mechanism detoxification mechanism

Proposed enzyme(s)

involved

Case study

Michael glutathione conjugation

Potential -
addition
p h dase I I Schiff base conversion of aldehyde to
m Eta bO I |S m formation corresponding carboxylic acid
mec h an is ms Acylation conversion of aldehyde to

corresponding carboxylic acid

SN2/SNAr glutathione conjugation

Other examples N-acetylation

hydrolysis

GEH
e

Unilever

glutathione-s-transferases

aldehyde
oxidase/dehydrogenase(s)

aldehyde
oxidase/dehydrogenase(s)
glutathione-s-transferases

N-acetyl transferase(s)

carboxylesterases

o,B unsaturated

compounds

aldehydes

aldehydes

dinitrohalobenzenes

PPD

esters

Some sensitisers have more than one reaction mechanism for haptenating proteins and are likely to have
more than one mechanism for phase Il metabolism



ROS and Lipid peroxidation endproducts
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Conclusions and future work in research and potential use in RA

Phase Il metabolism - concomitant and likely faster than haptenation
e Cansimple assays be developed to be used in addition to reactivity assays and improve our prediction of sensitising potency?

Are all haptenation events reversible?
* To what extent and can this be measured?

ROS increase results from disturbance of redox balance by sensitisers
* Does protein damage resulting from ROS and lipid peroxidation speed up processing and presentation of haptenated

epidermal proteins (antigens)?
* Do ROS and lipid peroxidation endproducts compete with hapten for detoxification (phase Il metabolism)?
* Can we measure the effect of ROS and levels of lipid peroxidation endproducts?

Do any of the above events hold the key to interindividual variability in susceptibility to

sensitisation?
* Individuals have different levels and activity of metabolic enzymes and can therefore process sensitisers at different pace
* Individuals have different PUFA make up of cell membrane and could produce different levels of endproducts from lipid

peroxidation

Assays do not have to be complicated to be useful in risk assessment!
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Questions?
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