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Safety without Animal Testing:

« Unileveris committed to ending

animal testing globally. We
believe in using science, not e PR e g e

animals, to assure the safety of
our products and their ingredients.

 Non-animal safety approaches
are applied by our leading-edge
scientistsin collaboration with
world-class researchers & experts.

- These partnerships, combined
with our multi-disciplinary
expertise enable us to protect
people and the environment
without animal testing.
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Next Generation Risk Assessment (NGRA)

A Strategic Roadmap for Establishing
New Approaches to Evaluate the Safety
of Chemicals and Medical Products
in the United States

NGRA is defined as an exposure-led,
hypothesis-driven risk assessment
approach that integrates New Approach
Methodologies (NAMs) to assure safety
without the use of animal testing

Next Generation Risk Assessment:
B T T -

USING New Approach
21ST CENTURY Methods Work Plan
A sc‘ENCE ing Use of animals in chemical testing
TOXICITY TESTING IN THE 21ST TO IMPROVE

CENTURY: A VISION AND STRATEGY RISK-RELATED

EVALUATIONS




SEAC | Unilever °

Safety science: what can we do better?

Ensuring that the use of ingredients in our products is safe
for the receiving environment

|/ e

Better, more Moving
sustainable away from
chemicals animal tests

eee THUS NAMS provide the opportunity for more

g% mechanistic, higher throughput and animal-free ERA
Unillever
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NAMs in environmental safety assessments
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Grouping: chemical and biological based

MIE/ MechoA profiling

To reduce the proportion of compounds that
receive an “unclassified” by current schemes
enabling more robust grouping/ read-across/
prioritisation
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{r Classified compounds
‘.. Species coverage
'. Chemical coverage

'. Unique information particularly for
the reactive and specific domains
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Omics based grouping for read-across

Conventional structure-based
grouping hypothesis

Hierarchical clustering of ToxPrint
chemotypes
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exposure of
juvenile (5 d)
D. magna to &
test compounds

Fuse data streams
and perform
hierarchical

cluster analysis

Processing and statistical
. Acute (48 h) analysis of each omics data

platferm covering
1991 D. magna

streq
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Genes-to-Pathways Species Conservation ANalysis (G2P-SCAN)

s

Unilever

A workflow to integrate and
socialize a number of existing
software and databases to help
data gathering and structuring
for subsequent analysis.

Leveraging on the integrated use
of available data in a WoE
approach to serve as a scaffold
for a mechanistically-driven
testing strategy and hazard
characterization.

Input: Human gene(s)

Step 1:

Mapping human gene(s) to their known biological pathways

S

Step2:

Identifying orthology across species

per each :' ----------------------------- !
pathway 1 Mouse :
| Retrieve Extracting Rat :
1 oall genes —» all orthologues ﬁebl’alt:I(sjh |
! in other species ematode |
| fsepec FruitFly !
: Budding Yeast |
Step 3:

Retrieving additional information to infer conservation and
functionality (families, entities and reactions)

N

Step 4:
Data output

Providing the evidence of the conservation and functional coverage
across species is critical to discern the conservation in physiological
processes and predict response patterns and toxicity outcomes in the

environment.

Get Pathways

jefi

User defined Human gene Use Reactome via HumanMine to
symbols & user defined pathwayusy map genes to pathways and filter wey.  List of Reactome pathways
filter to user defined hierarchy level

Get all Genes in Pathways

Use Reactome via Table of human gene e
Pathwaylist = Humenline to getall s symbols and identifiers b U 0E UTHE
genes in pathways per pathway Ehnes e ¥

N Call UniProt AP| per of
Human and species ™ o ientify single @b mapped protein
hEe=) accession per gene cessi

g Table of proteins with  Count number of unique
AN ey mapped InterPro family ssb family identifiers par
IDs pathway and species




Case study:
A framework to

demonstrate the
applicability of
NAMsin
Environmental Risk ‘M
Assessment (ERA) °
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Objectives:

Evaluate the utility and the applicability of mechanistic-based information to complement and
strengthen current ERA practices without the need for generating new animal data

v' Assessing the availability, suitability and power of NAMs-based data
v Benchmark mechanistically-derived Points of Departure (PoD) to complement current ERA practices

@

v' Use all data as part of a weight of evidence approach to provide increased confidence in decisions
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The integration of
historical /in vivo

data and NAMs can mechanis:tic
build confidence in understanding of
safety decision potential expected
making toxicity effects

Insights will help
gain better

~
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Information gathering process:

Mode of Action identification
Using available scientific and regulatory
information and in silico profilers

Including historical in vivo as well as In

vitro data and in silico predictions to
generate relevant PoD

o—=—= Pub@Cihem

A

Species at risk identification
Use of publicly available tools and
databases to identify susceptible species
(based on targets and processes)

Quantitative In Vitro to In Vivo Extrapolation
In vitro and in vivo exposures must be
“transformed” into comparable exposure
metrics requiring robust qlVIVE models

Weight Of Evidence approach
Collate all the information in an intelligible

way to guide and support decisions




Case-study 1: ethinylestradiol
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Case-study 2: Chlorpyrifos
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Key highlights

Integration of in vivo, in vitro and in silico data in a weight of evidence approach
can build confidence in safety decision-making.

v provides confidence that most sensitive species can be identified (in line with

historical knowledge of chemicals);
v Species sensitivity is in line with MoA and target conservation

v' invitroendpoints seem to be at least as protective as traditional /n vivo.

Challenges to be addressed

> Lack of standardised study designs may hinder data usage

T > Challenges for data-poor chemicals
P

o > No one-size-fit-all approach
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Take home messages

Understanding exposure is critical to applying/ interpreting NAMs for safety
assessment.

- Tangible opportunities already available to improve environmental protection
by applying NAMs approaches and all available information

* Maechanistic understanding allows to move away from black box in vivo studies,
to better understand how chemicals impact species and to identify potential
impacts which in vivo studies would not identify.

« There are challenges to address particularly in standardisation and training
needs within user communities (Risk Assessors and Regulators)
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Establishing better environmental protection through Nexgen,
mechanistic based environmental risk assessment paradigm shift
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Exposure

r---

Understand fate
and behaviour in
the environment

Estimate emissions
using spatially-

explicit models

Consider
ADME (TK/TD)
processes

Safety

e s

Effect (bioactivity)

Collate existing
information

Generate NAMs-
based data to fill
data gaps

Evaluate toxicological
and taxonomical
coverage

assessment

decision
O O
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t paradigm shift: Are

ey o At Mg 23571573 DO 10100 7

Rivetti & Campos, IEAM 2023
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Ultimate goal: Increased integration of human & environmental safety decisions

First step- developing a common framework & language

Tier 0- Identify use Tier 1- Generate data to Tier 2- Refine assessment,
scenario and collect ensure refined exposure incl. bespoke assays to
existing information and increase Toxicological increase decision certainty
and taxonomical coverage
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and many more...

All underpinned by SEAC science, its scientists and our scientific

partners
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EPA and Unilever Announce Major Research
Collaboration to Advance Non-animal
Approaches for Chemical Risk Assessment
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