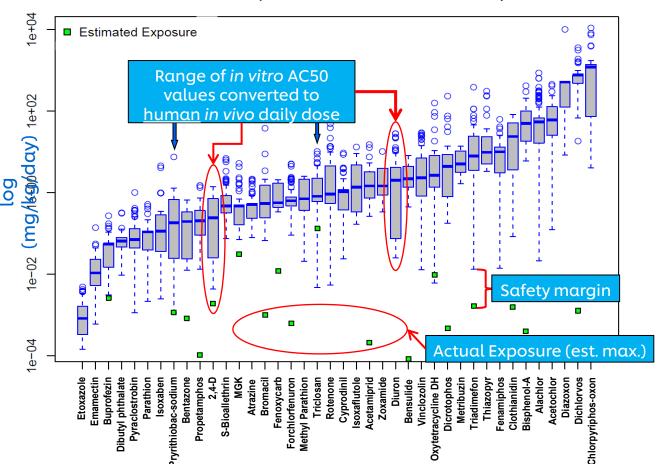
Overview of New Approach Methodologies (新途径方法综述)

Carl Westmoreland and Dawei Tang (汤大为)

New Approach Methodologies for Future Food Safety Bs Z Assessment Seminar

Safety, Environmental & Regulatory Science

Next Generation Risk Assessment (NGRA) New Approach (non-animal) Methodologies (NAMs)


NGRA is an exposure-led, risk assessment approach that integrates New Approach Methodologies (NAMs) to assure (human & environmental) safety without the use of animal testing

NAMs are any *in vitro* or computational (*in silico*) method that enables mechanistically based chemical safety assessment and contributes to the replacement of animals

Applying the NGRA concept to Safety Assessment – PROTECTION no PREDICTION

(保护而不是预测)
Distributions of Grar Equivalent Values and Predicted Chronic Exposures

- If no bioactivity is observed at relevant exposures, there can be no adverse effects.
- No need to predict the results of high dose toxicology studies in animals.

下一代风险评估框架-分层迭代

使用中

Likely in use

Maybe in use

Read across 交叉参照

Exposure-based waiving 基于暴露的豁免

In silico tools 计算机模拟工具

代谢及代谢物鉴定

基于生理学的动力学模型

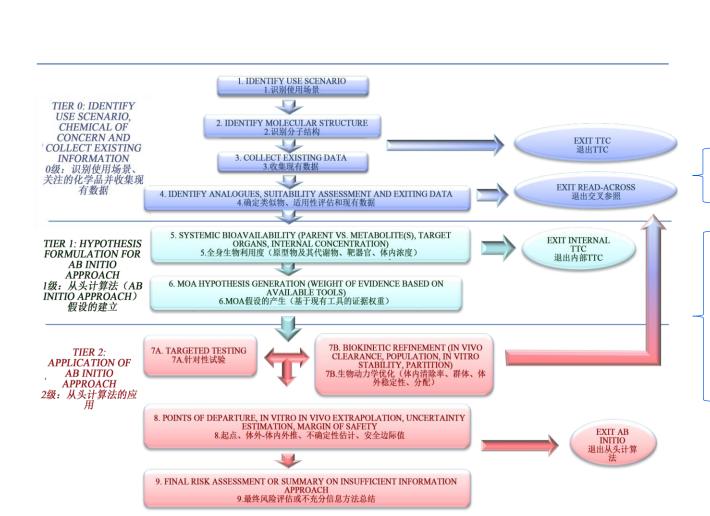
In chemico assays 化学分析法

'Omics 组学

Reporter gene assays 报告基因测定

In vitro pharmacological profiling 体外病理学分析

3D culture systems 3D培养系统


Organ-on-chip 器官芯片

Pathways modelling 通路模型

Human studies 人体临床研究

从头开始的化学安全评估:基于暴露考虑和非动物方法的工作流程

Berggren et al (2017) Computational Toxicology 4, 31-44

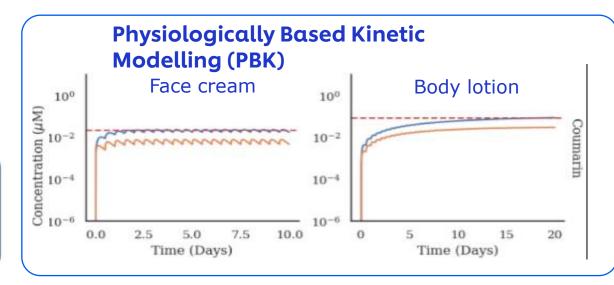
Risk Assessment Outcome

BIOACTIVITY (生物活性)

High-Throughput transcriptomics (HTTr)

- · TempO-seek technology full gene panel
- 24hr exposure
- 7 concentrations
- Various cell models (e.g. HepG2, MCF7, HepaRG)
- Dose-response analysis using BMDExpress2 and BIFROST

Reynolds et al. 2020. Comp Tox 16: 100138 Baltazar et al. 2020. Toxicol Sci 176(1): 236–252


- 36 biomarkers covering 10 cell stress pathways
- HepG2
- 24hr exposure
- 8 concentrations
- Dose-response analysis using BIFROST model

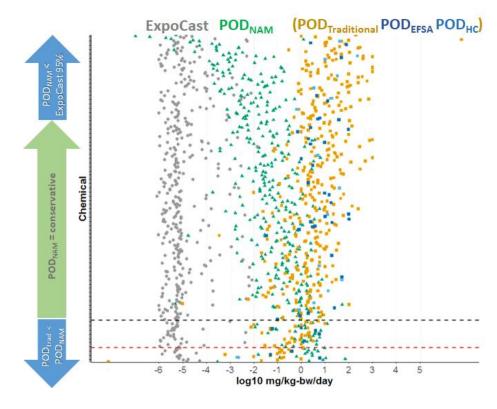
Hatherell et al. 2020. Toxicol Sci 176(1): 11-33

Image kindly provided by Paul Walke

EXPOSURE (暴露量)

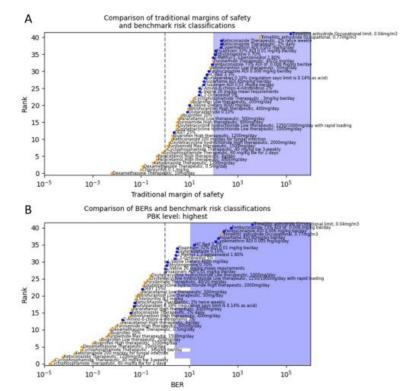
Identify lowest (most sensitive) point of departure, expressed in µM

Identify realistic worst-case plasma exposure (C_{max}) expressed as µM


EXPOSURE

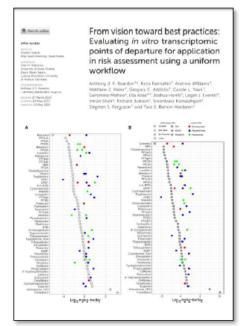
The bigger the BER, the greater the confidence that bioactivity will not occur in exposed consumers

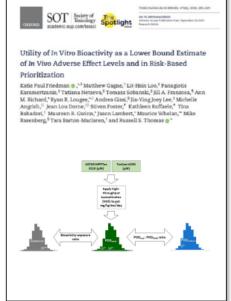
BIOACTIVITY EXPOSURE RATIO =

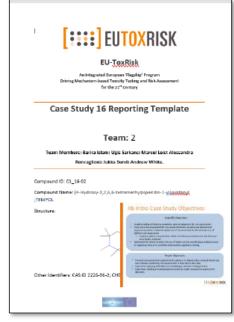

NGRA在"保护"上的表现

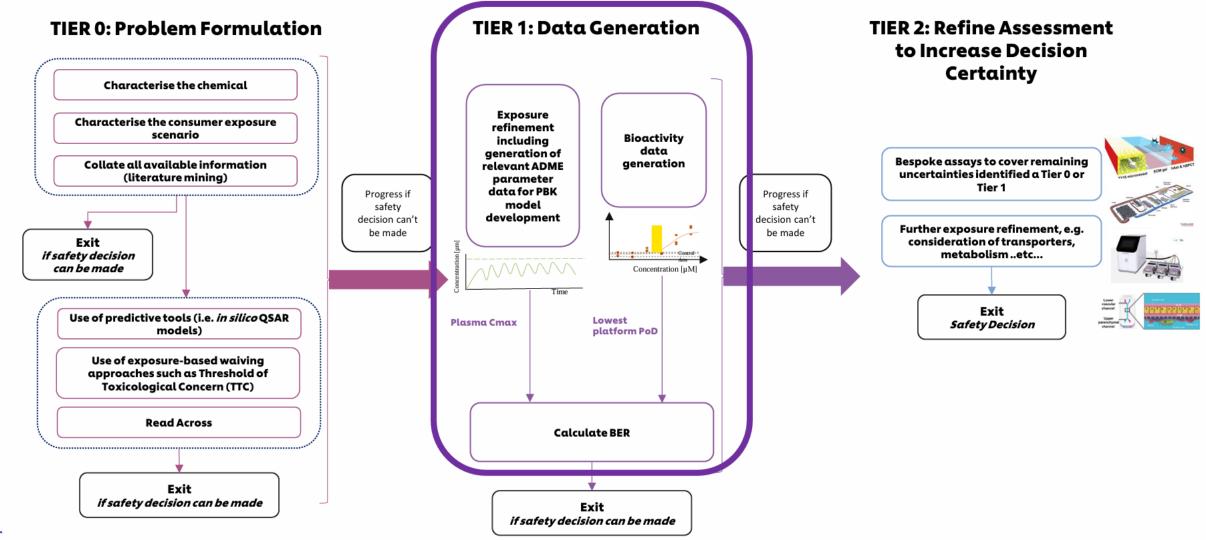
Case Studies Demonstrating Application of Bioactivity as a Protective POD

Paul-Friedman et al., 2020


NAM-based assessments can be at least as protective as animal-based assessments




基于NAMs的NGRA案例研究:



Unilever: A NAMs/NGRA Tiered Framework Approach: The overall goal is a human safety risk assessment

Toxicological Sciences, 2025, 204(1), 79-95

https://doi.org/10.1093/toxsci/kfae159 Advance Access Publication Date: December 18, 2024

Research article

Advancing systemic toxicity risk assessment: Evaluation of a NAM-based toolbox approach

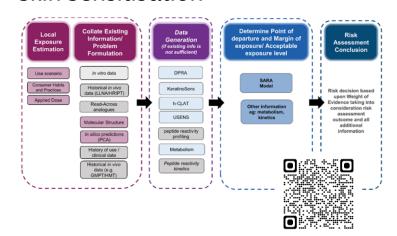
Sophie Cable*, Maria Teresa Baltazar, Fazila Bunglawala, Paul L. Carmichael, Leonardo Contreas, Matthew Philip Dent, Jade Houghton, Predrag Kukic, Sophie Malcomber, Beate Nicol, Katarzyna R. Przybylak, Ans Punt, Georgia Reynolds, Joe Reynolds, Sharon Scott, Dawei Tang, Alistair M. Middleton (h)

Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Shambrook MK44 1lQ, United Kingdom

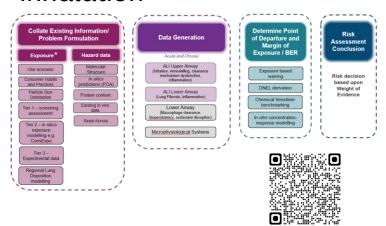
physiologically based biokinetics

Unilever Next Generation Risk Assessment Frameworks (联合利华下一代风险

评估框架)


Systemic

Tier 2: Tier 1: Refine Assessment **Problem Formulation** Systemic-safety toolbox chemical Characterise the identified a Tier 0 or Tier 1 consumer exposure scenario Collate all available refinement, e.g. be made Cell Stress Panel if safety HTTr (MCF7, HenaRG, HenG2) decision <u>can</u> be Use of in silico tools waiving (TTC) Concentration (uM Calculate BER and compare to BER if safety decision Weight of evidence assessment with Tier 0 and Tier 1 information Cable et al. 2025 if safety decision


Developmental & Reproductive

Skin Sensitisation

Inhalation

Reynolds et al. 2021

de Ávila et al. 2025

Global Animal Testing Bans for Cosmetics (全球对于化妆品

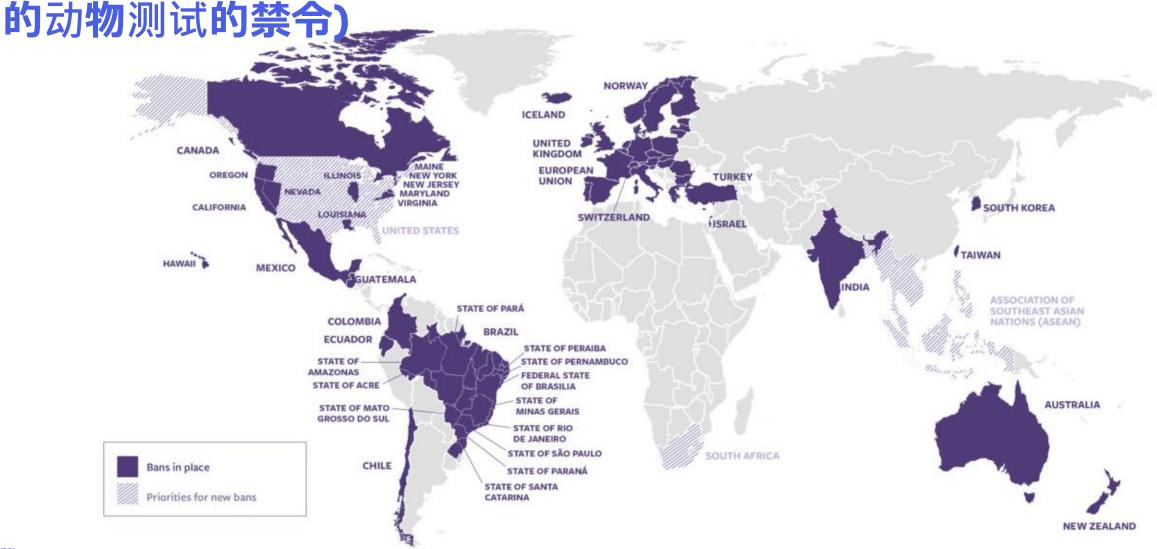


Image from

国际化妆品组织共同努力:

https://doi.org/10.1016/j.comtox.2018.06.001

on Cosmetics Regulation

Regulatory Toxicology and Pharmacology

Paving the way for application of next generation risk assessment to safety

M.P. Dent **, E. Vaillancourt *, R.S. Thomas *, P.L. Carmichael *, G. Ouedraogo *, H. Kojima *, J. Barroso *, J. Ansell *, T.S. Barton-Maclaren *, S.H. Bennekou *, K. Boekelheide *, J. Ezendam *, J. Field *, S. Fitzpatrick *, M. Hatao *, R. Kreiling *, M. Lorencini **, C. Mahouy *,

B. Montemayor , R. Mazaro-Costa , J. Oliveira , V. Rogiers , D. Smegal , R. Taalman , Y. Tokura , R. Verma , C. Willett , C. Yang

The Control of the Co

decision-making for cosmetic ingredients

为化妆品成分安全决策应用 NGRA铺平道路

Skin Sensitization Best Practice Guidance


最佳实践指导文件:皮肤致敏: 在化妆品成分中使用新方法

各监管机构在准备组织转型中,以支持NAMs/NGRA的监管使用:

towards-an-animal-freeregulatory-system-for-industrialchemicals

Environment and Climate Change Canada

Health Canada

Santé Canada Environnement et Changement climatique Canada

Strategy to replace, reduce or refine vertebrate animal testing under the Canadian Environmental Protection Act, 1999 (CEPA)

Environment and Climate Change Canada Health Canada

July 2025

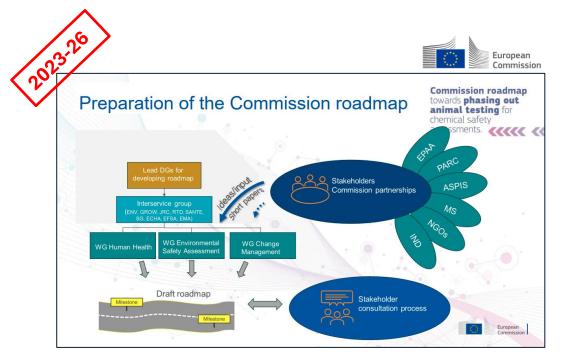
Executive summary

The Conadian Environmental Protection Act, 1999 (CEPA) recognizes the need to replace, reduce or refine the use of vertebrate animal testing when assessing the potential harms that substances may pose to human health and the environment. Health Canada (HC) and Environment and Climate Change Canada (ECCC) are working to advance this work on several fronts, including through the development, standardization and incorporation of new approach methods (NAMs) into risk assessment activities. To guide continued efforts towards the replacement, reduction or refinement of vertebrate animal testing under EPA. HC and ECCC have developed the following strategy.

This strategy was informed by comments received through the public consultations on the <u>notice of intent</u>, which closed in January 2024, and the <u>graft strategy</u>, which closed in November 2024. A summary of input received through these consultations is available in the MANE WE Heard Reports for the notice and the draft strategy.

This strategy is comprised of 5 elements: (1) the identification and prioritization of NAMs for regulatory needs, (2) advancement of research and data generation, (3) promotion of harmonization and collaboration, (4) communication and consultation with stakeholders, and (5) implementation in CEPA regulatory programs related to the testing and assessment of substances. As part of the strategy, regulatory needs that are currently being met through vertebrate animal testing will be identified, including those for which NAMs are available, are in development or need to be developed. This will inform the prioritization of NAMs and the evaluation of their state of readiness and fire for-purpose use as well as guide related HC and ECCC research, in alignment and in collaboration with domestic and international efforts. HC and ECCC will also continue to communicate and consult with stakeholders. Together, this work will help guil and promote the use of scientifically justified alternative approaches that replace, reduce or refine the use of vertebrate animals in toxicity testing whenever possible (that is, to the extent practicable and scientifically justified) under CEPA.

ine vertebrate animal testing under CEPA for regulatory needs


data generation collaboration

ith stakeholde julatory progr

Strategy to replace, reduce or refine vertebrate animal testing under CEPA

欧盟委员会Roadmap路线图:将逐步淘汰化学品安全的动物测试,以支持欧洲向NGRA的有序过渡


欧盟委员会Roadmap路线图将于 2026年第一季度发布。

路线图提案由人类健康、环境安全 与变更管理工作组开发,经过3次 公开研讨会和磋商。

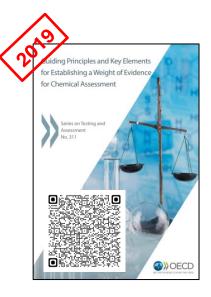
包括EPAA、PARC、ASPIS在内的利益相关者全程参与,帮助建立信任并促进合作。

Roadmap towards
phasing out animal testing

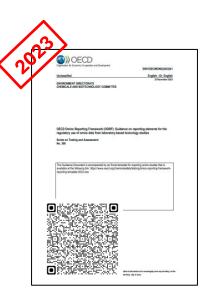
https://doi.org/10.1016/j.yrtph.2025.105818

欧洲替代动物测试方法合作伙伴关系(EPAA,European Partnership for Alternative Approaches to Animal Testing)与欧盟委员会及其他组织合作,于2025年3月组织了一次无动物化学品安全评估会议。

https://echa.europa.eu/documents/10162/127346428/AF-CSA_Conference+Report.pdf/d7994cf5-4b38-9a8a-9cbc-0c89da0dcad8?t=1749891499636


经合组织(OECD)综合测试与评估方法(IATA)及指导文件正在推动NGRA标准化:

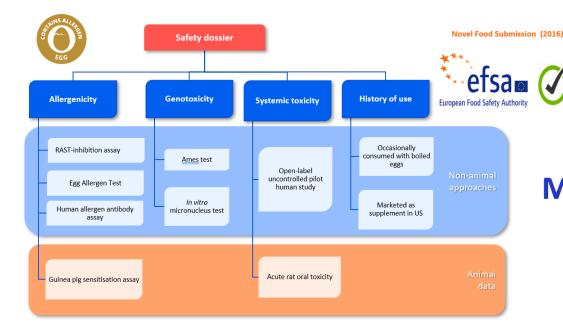
IATA结合多种信息来源来得出化学品毒性结论,并且是为应对特定的监管情景或决策背景而开发的。

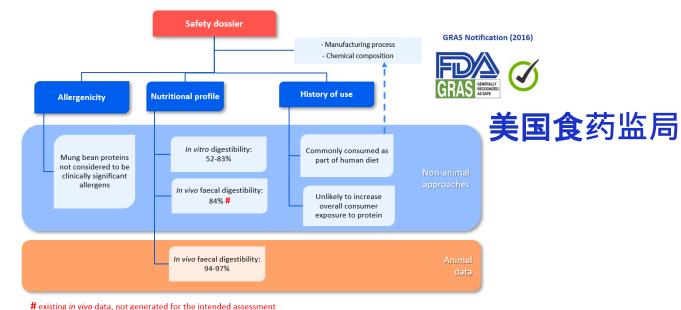

在IATA中确定性 方法报告的指导 文件

建立化学品评估 证据权重的指导 原则

生理学基础动力学 (PBK)模型报告指导 文件

组学报告框架 (OORF): 组学数 据报告要素指南"


(Q)SAR 评估框架: 定量结构-活性关系 模型和预测指南


Food Safety without Animal Testing - Regulatory Examples (食品非动物测试方法法规案例)

Egg membrane hydrolysate 鸡蛋膜水解物

欧洲食品安全局

Mung bean protein isolate 绿豆分离蛋白

NAMs and NGRA in Food Safety

Regulatory Toxicology and Pharmacology 162 (2025) 105863

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

Countdown to 2027 – maximising use of NAMs in food safety assessment: closing the gap for regulatory assessments in Europe

Adam Wood a,*, Franck Atienzar b, Danilo Basili c, Myriam Coulet c, Rebeca Fernandez d, Melina Galano e, Maricel Marin-Kuan Gina Montoya Przemyslaw Piechota Ans Punt a, Elena Reale c, Si Wang f, Paul Hepburn

- ^a Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
- b Coca-Cola Services SA/NV, Chaussée De Mons 1424, 1070, Anderlecht, Belgium
- Société des Produits Nestlé S.A. Nestlé Research. Rte du Jorat 57, 1000 Lausanne 26. Switzerland.
- d FoodDrinkEurope, Avenue des Nerviens 9-31, 1040, Brussels, Belgium
- dsm-firmenich, Alexander Fleminglaan 1, 2613 AX, Delft, the Netherlands
- PepsiCo International, Beaumont Park, 4 Leycroft Road, Leicester, LE4 1ET, UK

ARTICLE INFO

Handling Editor: Dr. Daniele Wikoff

Keywords: Food safety

Next generation risk assessment (NGRA) New approach/non-animal methodologies

Risk assessment Regulatory toxicology

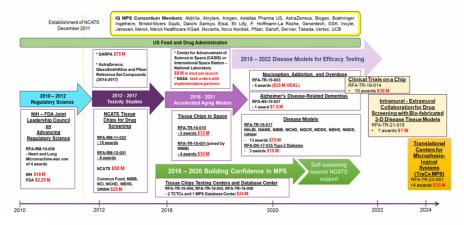
ABSTRACT

Safety assessments of regulated food products in the European Union (EU) largely rely on experimental animal studies. Currently, the European Commission is developing a roadmap to phase out animal testing for chemical safety assessment across all relevant pieces of legislation, including foods, while the ambition of the European Food Safety Authority (EFSA) is that by 2027, new scientific developments, i.e., new approach/non-animal methods (NAMs), will be integrated into assessments leading to "the minimisation of animal testing". However, considering recent requests that have been made to conduct new animal studies for some regulated products, significant progress is required to minimise further and ultimately replace animal testing in the food safety environment. To advance this, we review several NAMs amenable for use in food safety assessment and reflect on their presence in EU food safety regulation and sectoral guidance. For many years, proposals to incorporate NAMs into food safety assessments have been made with questionable regulatory impact. Therefore, we present several amendments which could be made to the EU food regulatory system and current strategies towards phasing out animal testing which, if taken up, could lead to a tangible difference in the extent of animal testing within the food safety environment. Recognising that research may be required for some of these NAMs to enhance regulatory uptake, we propose potential follow-up projects that complement recent research & innovation (R&I) needs published by EFSA which food safety stakeholders could coordinate or participate in.

Opportunities for increased use of NAMs in Food Safety (在食品安全中更多的使用新途径方法的机会)

A. Wood et al.

Regulatory Toxicology and Pharmacology 162 (2025) 105863


Table 2 Example EFSA opinions across range of regulated product types where animal testing has been conducted unnecessarily, including potential NAMs that could have been conducted to conclude safety without such studies.

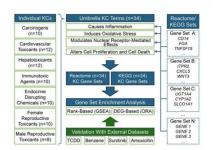
Regulated product domain	Potential NAM alternatives	Substance/food	Overview	Studies conducted and results	Non-animal approach	Reference
Flavourings	EBW	2-(4-methylphenoxy)-N- (1H-pyrazol-3-yl)-N- (thiophen-2-ylmethyl) acetamide	In a 2018 evaluation following their (EFSA) flavouring evaluation procedure, exposure for the flavouring was estimated as 225 µg/person/day (adults) and 142 µg/person/day (child) which exceeded the respective TTC value (Cramer class III) of 90 µg/day by 2.5 and 1.6-fold for adults and children respectively. As a consequence a 90-day and developmental toxicity study were considered necessary.	A 90-day and developmental toxicity study were conducted and NOAELs were established at the highest tested doses of 100 and 1000 mg/kg bw/day respectively.	Possibility to demonstrate safety using the iTTC approach, where internal exposure estimates could have been obtained through use of the dietary exposure estimate and a variety of pharmacokinetic modelling approaches performed in a tiered manner, that is parameterised using <i>in silico</i> data first before proceeding to <i>in vitro</i> data if required.	EFSA (2018d)
Flavourings	EBW	2-methyl-1-(2-(5-(p-tolyl)-1H-imidazole-2-yl)piperidin-1-yl)butan-1-one	In a 2024 evaluation following their (EFSA) flavouring evaluation procedure, exposure for the flavouring was estimated as 45 and 28.4 µg/person per day), for adults and children, respectively, which were 2 and 3.2-fold below the respective TTC (90 µg/	Although no further data was required the applicant conducted a 90-day study where a BMDL20 of 0.71 mg/kg bw/day was calculated.	TTC. As suggested in Table 4, by integrating last-resort requirement into respective foods regulation and ensuring greater communication between applicants and EFSA during application procedure, the need for testing (or lack thereof) can be discussed prior to commissioning such tests.	EFSA (2024b)

NGRA and NAMs science is constantly evolving and there are still many challenges (进展和挑战)

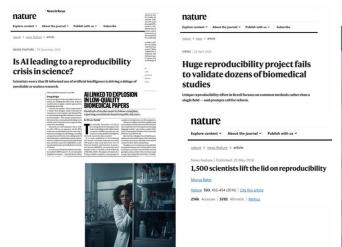
Opportunities with Organs-on-Chips (OoC)

The USA NIH-funded 'Tissue Chips' Landscape = >\$400m to-date

Maximising the wealth of data in transcriptomics



Taxicological Sciences 2025 205(2), 310-325 https://doi.org/10.1093/toxsci/kfaf036 Advance Access Publication Date: March 20, 2025


A workflow for human health hazard evaluation using transcriptomic data and Key Characteristics-based

Reproducibility and Validation

联合利华在中国的NGRA活动

延续至2025-2030

教育培训

科研合作

联合利华&中国毒理学会替代发展奖(2016-2023)

案例交流

合作伙伴

Thank You

With special thanks to Paul Carmichael, Jin Li, Gavin Maxwell, Paul Hepburn, Mollie Lu, Adam Wood and the scientists at Unilaver SEDS

SERS
Safety, Environmental
& Regulatory Science

seac.unilever.com

