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1) Background

It is important for the safety assessment of consumer spray products (e.g., antiperspirants, hairsprays, cleaning sprays) to consider the potential for ingredients to cause adverse effects in the lung under the conditions of product use. The
assessment of chemical-induced lung effects has historically been achieved by performing animal testing, which has significant limitations (e.g., biological differences between rodent and human respiratory systems and ethical concerns).
In this context, recent research anchored in human-relevant science has focused on developing human-relevant in silico and in vitro tools and approaches (New Approach Methodologies, NAMs) that can be employed, together with
existing information, within the next-generation risk assessment (NGRA) of materials to assess the risk of lung toxicity.

This study investigated the feasibility of defining an NAM toolbox for lung toxicity assessment using two commercial 3D reconstructed human lung models to represent the upper and lower respiratory tract, namely MucilAir™-HF and
EpiAlveolar™ systems, respectively. The different bioactivity readouts (from which points of departure, PoDs, are derived) are mixture of readouts directly mapped into the AOPs relevant for lung toxicity (specific) and non-specific
bioactivity. To investigate the feasibility of these assays to provide protective PoDs and bioactivity exposure ratio (BER) estimates, a panel of benchmark chemicals, selected based on historical safety decisions and covering several human
exposure scenarios (e.g., consumer goods products and occupational use scenarios), was tested.

2) Human-relevant strategy for selecting NAMs for lung toxicity NGRA

Eleven benchmark chemicals (Table 1) were tested, including inhaled materials and drugs that may cause lung toxicity following systemic exposure, covering 14 human exposure scenarios classified as low or high risk based on historical
safety decisions. Directly mapped onto the AOPs relevant for lung toxicity and non-specific bioactivity, different readouts, including tissue integrity and functionality, cytokine/chemokine secretion, and transcriptomics, were investigated
through a 12-day repeated exposure scenario in MucilAir™-HF and EpiAlveolar™ systems (Fig. 1). For calculation of BERs, the PoDs derived from the substances-induced bioactivity were combined with human exposure estimates that
were obtained using multiple path particle dosimetry (MPPD) exposure modelling or literature maximum plasma concentration (C,.,) (Fig. 2).
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3) Effects of benchmark chemicals in the lung tissue models | 4) Transcriptomics is useful to elucidate mechanism
Main results obtained when MucilAir™-HF and EpiAlveolar™ models were exposed daily to benchmark chemicals, in Qf thiCity in the EpiAlveolar mOdel

three different exposure methods (aerosol, apical and/or basal liquid), over a 12-day experimental period. Several Here, we explored the potential utility of transcriptomics as a technology, not only for establishing a PoD
bioactivity readouts were investigated, including: measurements for tissue integrity loss (TEER) and functionality but also for gaining mechanistic insights to generate hypotheses within the context of a risk assessment
(mucociliary clearance, MCC; cilia beating frequency, CBF; and mucin secretion), cytokine/chemokine secretion with focus framework. Therefore, we set out to investigate if, by using this type of analysis, the mechanisms of lung
on those proteins involved in the inflammation (CCL2, CCL7, CCL26, CXCL10, CXCL11, ICAM-1, IL-1a, osteopontin, IFN-y, toxicity (especially pulmonary fibrosis) associated with the benchmark chemicals could be identified. Figure
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5) In general, for high-risk exposure-chemical scenarios 6) Defining a safe threshold:
in vitroPoDs were lower than the predicted exposure animal testing versusnon-animal NAMs

Comparison of human internal exposure (upper/lower respiratory tract or plasma) and in vitro PoDs per benchmark Risk assessments for human inhalation toxicity based on traditional animal studies generally include a safety
chemical using MucilAir™-HF or EpiAveolar™ models are shown in the Fig. 4. factor of 25 (ECHA, 2012). Therefore, a margin of safety over 25 compared to no observed adverse effects
//Fig. 4. All obtained PoDs, bioactivity readouts and timepoints (days 1, 4, 8 or 12) are plotted together with the associated lung regional \ Ievels in animals has been JUdged to be protective for human health for Several decades rega rding Iocal Iung

concentration estimates (top) or maximum plasma concentration, Cmax (bottom).
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: Defining a safe BER threshold or the appropriate use of uncertainty factors remains a challenge in NGRA. A

| recent regulatory example, accepted by the US EPA (2021), of a non-animal risk assessment for the fungicide
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