

Pioneers & Trusted Partners in Regulatory Science, co-creating the Future for Superior, Safe & Sustainable Products

Regulatory Science: The Future of Food Safety
Risk Assessment

Paul Hepburn, Adam Wood and Richard Cubberley

FSSAI International Training Centre, 10 Oct 2025

Our Purpose is to use leadingedge Science & Data to:

SERS Expertise

SERS is a diverse, multi-disciplinary team of ~180 scientists covering:

- Cell & Molecular Biology
- Chemistry
- Computational Modelling
- **Environmental Safety**
- **Environmental Sustainability**
- **Exposure Science**
- Informatics & Data Science
- **Mathematics & Statistics**
- Microbiology
- **Process Safety**
- Regulatory Science (chemical & food safety)
- Toxicology

Deploy expertise on higher risk business projects

20+ Nationalities

15+ Languages

9 Countries

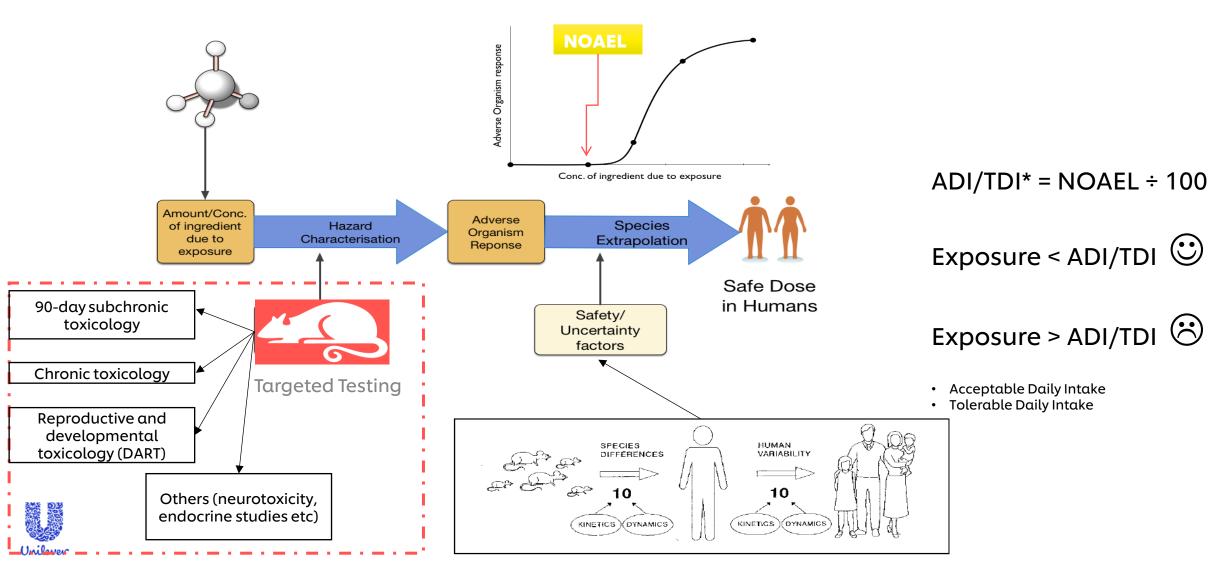
- Collaborate with leading external research teams to develop & apply new scientific capability
- Leverage science & global networks for consumer trust & freedom to operate

Safety Risk Assessments

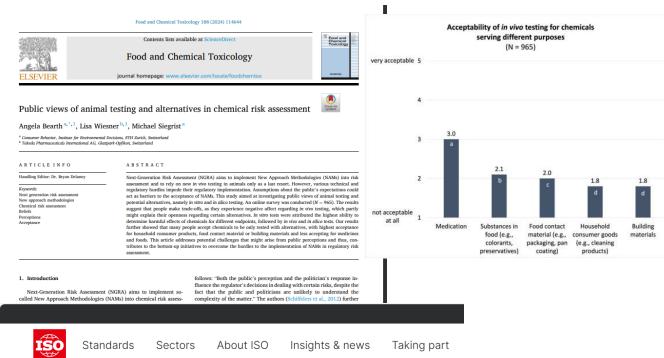
- Consumers, Workers, Environment

Life Cycle Assessments

- Environmental Impacts **Product Compliance**
- Regulatory Data & Dossiers



- Academic
- Industry
- Government



Traditional Risk Assessment for Food Safety

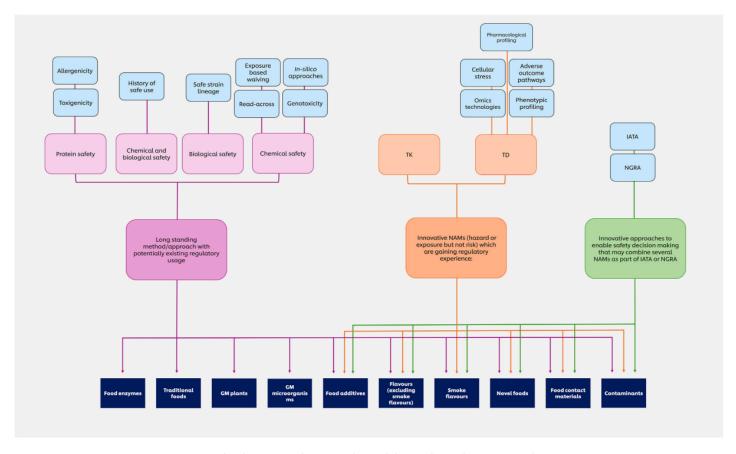
Reasons for change...

- **Human relevance** Various pathological findings in animals are not human-relevant e.g. some hepatic tumours in mice (aspartame/sweetener) – consequence can be detrimental to consumer trust in food/safety and lack of approval – US Delaney clause etc
- **Mechanistic** -possibility for more informative risk assessments - sensitive populations, mixture effects etc.
- **Changing consumer attitudes** growing consumer dissatisfaction with animal testing (no longer a cosmetics only issue!)
- **Vegan claims** compliance relies upon consideration of animal testing (e.g. ISO)
- **Speed/resource** dramatic uptake in novel food innovation to meet e.g. sustainability targets - traditional paradigm too lengthy

Read sample

ISO 23662:2021

Definitions and technical criteria for foods and food ingredients suitable for vegetarians or vegans and for labelling and claims


However, for single ingredient foods and individual ingredients including processing aids, FBOs, companies working on their behalf or companies over which the FBO has effective control shall not have carried out tests of any kind on animals, except when required by public authorities' regulatory procedures

NGRA and New Approach Methodologies (NAMs)

- NAMs Approaches that do not rely on generating new experimental animal data (though including those which use historical animal data) and comprising: In vitro, in silico, in chemico and ex vivo human models
- Such approaches may be used to provide information on hazard or exposure or used in combination.
- Some NAMs are long-standing (history of use), others are more-recent (transcriptomics).

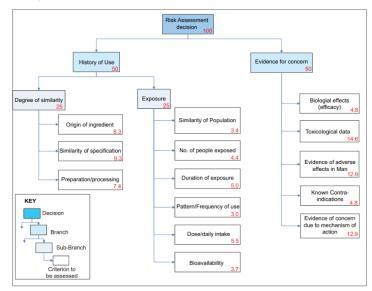
Their use in risk assessment is considered the next generation of risk assessment (NGRA)

Wood et al., (2025). Regulatory Toxicology and Pharmacology, Volume 162, November 2025

Many NAMs of relevance to food safety exist and many could find use across multiple types of 'regulated products' (additives, flavours etc).

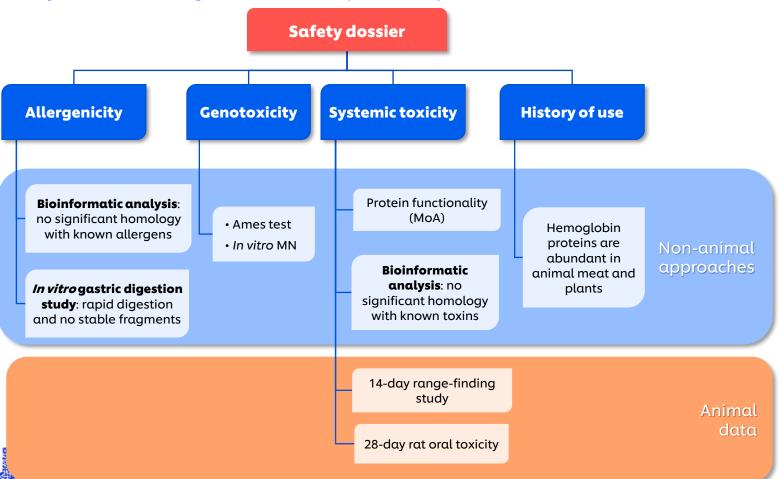
CASE STUDIES

History of use

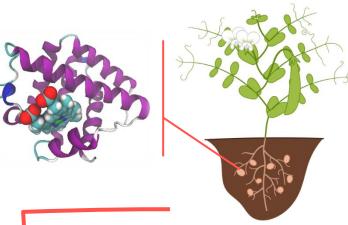

- A long-standing method (chemical and biological safety) that has played a role in numerous 'whole food' assessments, such as GM-crops and other novel foods, but also e.g. botanical extracts.
- Most often involves building an argument that a food is 'substantially equivalent' to a reference food and that reference food has a substantial and well characterised history of consumption.
 - Relies on considering factors such as 1.)
 compositional similarity between
 proposed/reference food, 2.) evidence of
 adverse effects from reference food and 3.)
 data on how the comparator is prepared,
 consumed etc.

Constable et al., 2007, Food and Chemical Toxicology, Volume 45, Issue 12

Neely et al., 2011, Toxicology International, 18 (Suppl1)

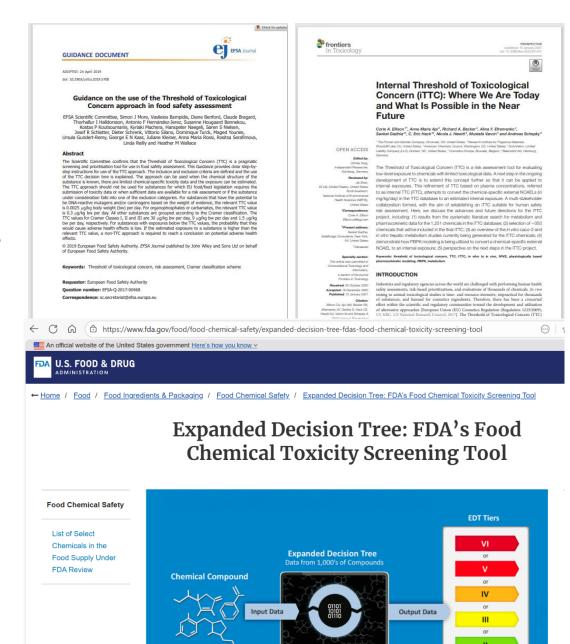


Soy leghemoglobin


Unilever

- Identity of the food: leghemoglobin from soy (Glycine max) expressed in yeast (Pichia pastoris).
- **Proposed use:** food ingredient in meat-replacement products as iron source.

GRAS Notification (2017)


Key points

The history of consumption of hemoglobin proteins in food together with the NAM data provided clear evidence to make a determination of safety.

Conclusion could have been based on comparison with other haemoglobin/overall protein intake rather than NOAEL from in vivo tox study.

Threshold of toxicological concern (TTC)

- The ability to waive toxicological testing for a substance without data if exposure falls below a threshold under which there is no appreciable health risk.
- Vast amount of guidance and best practice available externally.
- Significant work still underway externally to further develop approach – e.g. new rules, database harmonisation, new categories etc – e.g. FDA expanded decision tree.
- Work underway to develop an internal TTC (iTTC)
 value that could represent a higher tier method to
 waive exposures for substances without data.

Examples

Example 1: 2-methyl-1-(2-(5-(ptolyl)-1H-imidazol-2-yl)piperidin-1-yl)butan-1-on (substance A)

- Cramer Class III (90µg/person per day)
- Dietary exposure estimates of 45 and 28.4 µg/day for adults and children, respectively
- Exposure less than TTC no animal data needed
- Applicant did perform a 90-day study (BMDL = 0.71 mg/kg MoE 887 and 374 respectively).
- **Animal testing unnecessary**

Example 2: 2-(4-methylphenoxy)-N-(1H-pyrazol-3-yl)-N- (thiophen-2ylmethyl)acetamide (substance B)

- Cramer Class III (90µg/person per day)
- Dietary exposure: 225 µg/day (adults) and 142 µg/day (children).
- Exposures were hence ~2-fold above TTC and animal studies performed (90-day and developmental toxicity study). No effects in either study (up to 100 mg/kg) and MoE (min) was 10,500
- In the future, possibly an internal TTC could be used to address safety for cases like this.

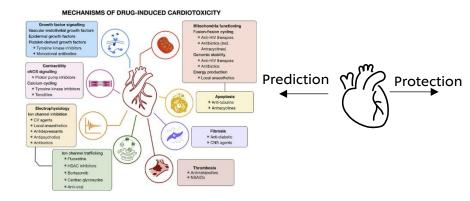
The need for innovative NAMs

Until recently, for, ingredients used at levels >TTC or ingredients where a history of use cannot be established...

Demonstrating safety without animal testing was challenging. However, in recent years, tremendous progress made in areas such as...

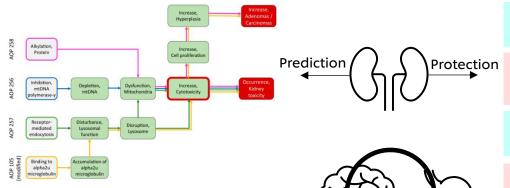
- High-throughput screening
- Computational sciences bioinformatics, pharmacokinetic modelling, statistics etc

These scientific advancements have opened new possibilities that have collectively shifted the dial in terms of our ability to demonstrate safety using non-animal methods


State of the art (>20-years)

NAM development - protection vs prediction

Rapid development of NAMs for use in risk assessment. Two alternate philosophies:


- 1.) NAMs developed to predict (possibly quantitatively) adverse effects
- 2.) NAMs developed to measure bioactivity (quantitatively) without classification as adversity or not.

Both have a place in **future** risk assessment. Unilever have invested significant resource into protective NAMs

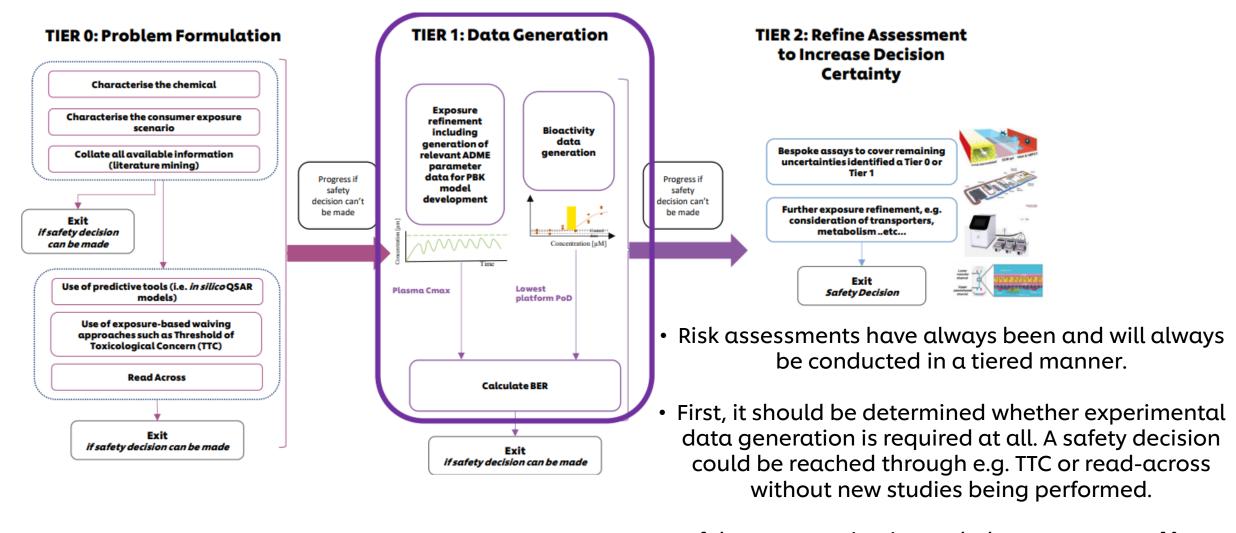
Manoshina et al., (2021). Cell Reports Medicine. 2:3 100216

NAMs capturing early biological changes protective of apical effects

Mally and Jarzina (2022). Frontiers in Toxicology

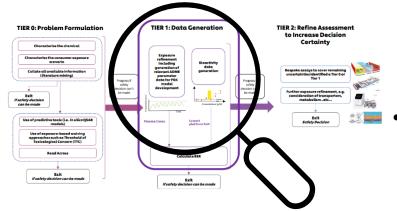
There are 78 major human organs; let's say there are five different ways in which chemicals could be toxic to each one (an underestimate); and let's say we need five key events (including a molecular initiating event) measured across each IATA with new in vitro tests. That's around 2000 assays conducted at just one dose and at one time point for complete human AOP-driven biological coverage. Carmichael et al., (2022). Altex, 39:3 Limited coverage approaches

Cell based/reporter assays

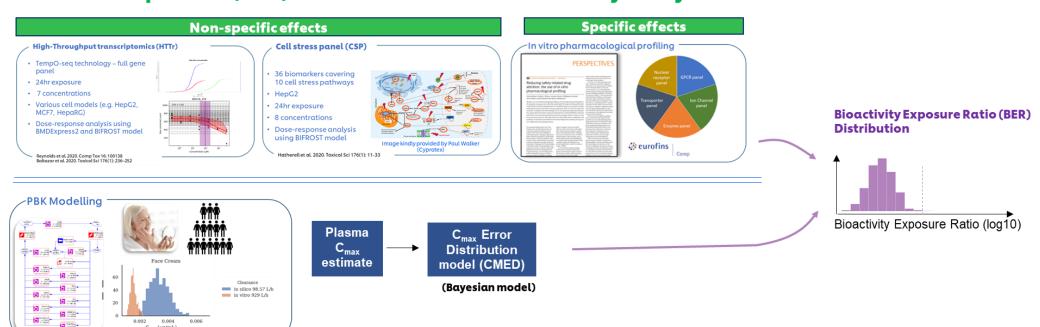

Data rich approaches

Transcriptomics

Cell painting


Place of innovative NAMs in tiered risk assessment framework

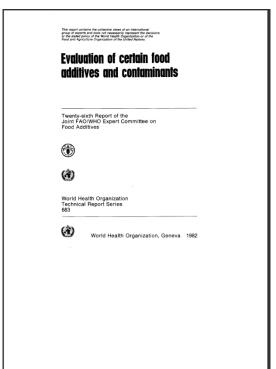
 If data generation is needed, NAMs are used in a tiered way, starting with broad coverage (protective) NAMs progressing to specific (predictive) NAMs as needed.


Unilever's NAM toolbox and NGRA tiered framework approach

Toxicology in Vitro (2020), 63, 104746

- Unilever's basic NAM toolbox uses non-specific and specific NAMs.
- Point of departures (PoDs) from these are compared with PBK model estimates of internal exposure to enable risk characterisation (through a bioactivity exposure ratio/BER).

Point of Departure (PoD) determination from Bioactivity assays



Case study - cyclamate

- Sodium cyclamate, also called E952

 (ii), is used as an artificial sweetener.
- Has been reviewed by JECFA (1982) and the SCF (2000) with ADIs established as 0-11 mg/kg (JECFA) and 0-7 mg/kg (SCF). Re-evaluation currently underway by EFSA.
- ADI is based on a NOAEL of 100 mg/kg derived from a 90-day rat study where the rats were administered cyclohexylamine (CHA: the major metabolite of cyclamate).

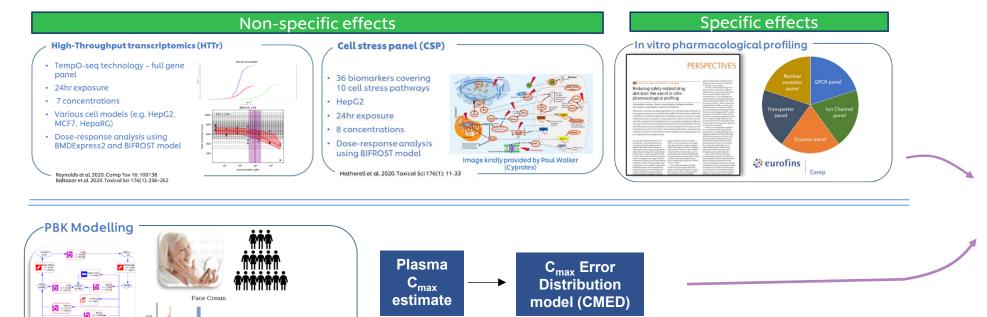
E Number	Name
E 420	Sorbitols
E 421	Mannitol
E 950	Acesulfame K
E 951	Aspartame
E 952	Cyclamates
E 953	Isomalt
E 954	Saccharins
E 955	Sucralose
E 957	Thaumatin
E 959	Neohesperidine DC
E 960a	Steviol glycosides from Stevia
E 960c	Enzymatically produced steviol glycosides
E 960d	Glucosylated steviol glycosides

Re-evaluation ongoing Re-evaluation completed in 2025 Re-evaluation completed in 2013 Re-evaluation ongoing Re-evaluation ongoing Re-evaluation completed in 2024 Re-evaluation ongoing Re-evaluation ongoing Re-evaluation completed in 2021 Re-evaluation completed in 2022 First evaluated in 2010 Evaluated in 2019 Evaluated in 2022

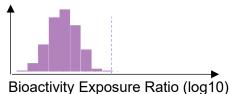
EFSA's Assessment

Re-evaluation ongoing

First evaluated in 2007


Unilever's NAM toolbox

in silico 98.57 L/h in vitro 929 L/h


0.004

Toxicology in Vitro (2020), 63, 104746

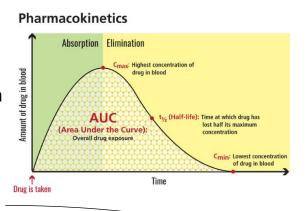
Point of Departure (PoD) determination from Bioactivity assays

(Bayesian model)

Bioactivity Exposure Ratio (BER)

Distribution

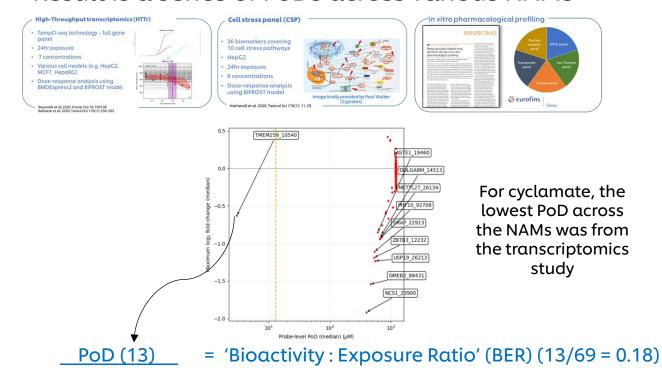
NGRA data - cyclamate


Exposure/PBK modelling:

PBK models need several building blocks!

An external dose Physical-chemical properties Pharmacokinetic properties

The outcomes are estimates of internal exposure, such as the maximum concentration in plasma (Cmax)

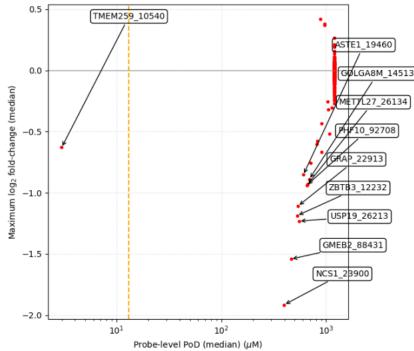

For cyclamate, our PBK modelling estimated a Cmax of ~69 µM after consumption of the ADI

Point of departure estimation:

Sodium cyclamate tested in the Unilever NAM toolbox

Result is a series of PoDs across various NAMs

Exposure (69)

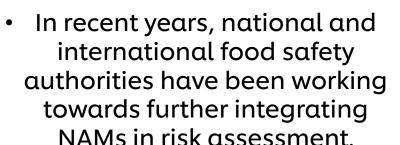

For cyclamate, bioactivity occurs at a lower exposure than dietary intake of the ADI - higher tier models needed!

Cyclamate - summary

- PBK estimates of internal exposure at the ADI, Cmax = ~68 uM.
- Lowest PoD from the NAMs (~12 uM) came from the transcriptomics study - HepG2 cells when looking for the lowest responding genes - highly conservative!
- NAM PoDs less than Cmax further experimental data generation would be required.
- (Next generation) risk assessments require tiering!
- Exciting developments underway externally with higher tier in vitro models e.g. organ on chip, alternative data analysis methods – key characteristics, gene signatures and computational sciences – AI etc.

Call to action: Evolution of dietary intake surveys to always include information on the time of intake as well as the amounts of consumed will be needed to support the shift to NGRA by the food sector

Single gene level PoDs after Cyclamate treatment (HepG2 cells) – unlikely toxicological significance


TIER 2: Refine Assessment to Increase Decision Certainty

External developments

- Food industry have made positive steps towards building internal NGRA capability and working to achieve regulatory change.
- Progress is still needed to maximise the use of NAMs in food safety assessments!

Agenda

New Approach Methodologies (NAMs) in Future Food Safety Risk Assessment

a Joint Workshop by World Health Organization (WHO) and Nanyang Technological University, Singapore (NTU Singapore)

Royal Plaza on Scotts, Singapore, 18 to 20 June 2025

EFSA Strategy 2027

Science Safe food Sustainability

future challenges. Within its risk assessment approaches, EFSA will develop and integrate new scientific developments focusing on NAM-based methods and the minimisation of animal testing, innovations in food systems, data, and technology, and strive to meet One health policy needs.

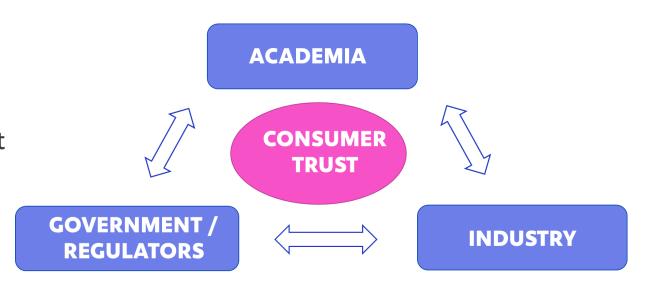
Regulatory Toxicology and Pharmacology

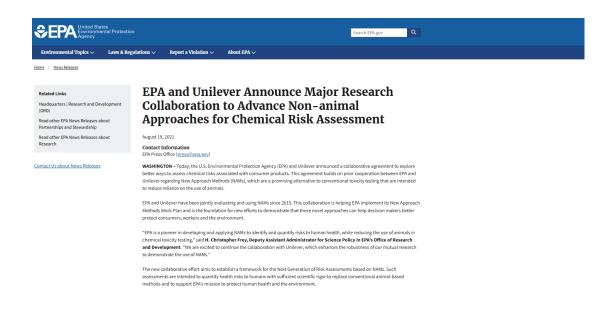
Countdown to 2027 - maximising use of NAMs in food safety assessment: closing the gap for regulatory assessments in Europe

Adam Wood ".", Franck Atienzar b, Danilo Basili C, Myriam Coulet C, Rebeca Fernandez C Melina Galano", Maricel Marin-Kuan", Gina Montova", Przemyslaw Piechota", Ans Punt Elena Reale^c, Si Wang^f, Paul Hepburn^a

menich, Alexander Fleningham 1, 2613 AK, Delft, the Netherlands o International, Beaumone Fark, 4 Leycroft Road, Leicester, LE4 1ET. 1

E-mail address: schen.wood/junilarer.com (A. Wood).


The General Food law defines food/foodstaffs as a substance/product (prespective of processing) intende school/contaminators). Despite this, the assessment of food/foodstaffs and residues and contaminants follow as well-as annihable to the assessment of food/foodstaffs equally applicable to either. Given this, the scope of this


Received 12 March 2025; Received in revised form 15 May 2025; Accepted 26 May 2025

Wrap-up

- Food safety is complex because food is complex! 'Food' comprises everything from single chemicals (flavours, additives) to complex mixtures with nutritionally relevant components.
- Multitude of different toxicological studies needed to deliver safe food given its complexity.
- The food safety ecosystem has played a key historical role in the development and application of NAMs.
- Paradigm shift is underway in risk assessment towards the use of innovative NAMs.
- Multi-disciplinary, multi-stakeholder engagement and collaboration needed to fully achieve the vision of non-animal safety science.

