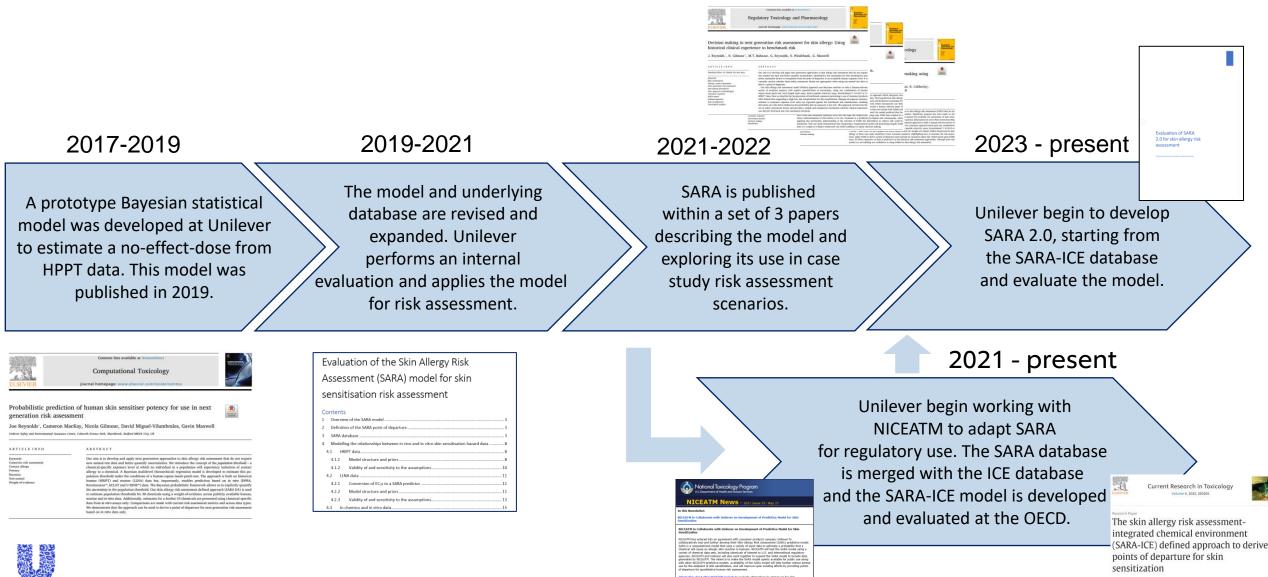
SARA-ICE A Model for Predicting a Human Relevant Point-of-Departure for Skin Sensitisation Risk Assessment

Georgia Reynolds

A new tool for skin allergy risk assessment

Skin Allergy Risk Assessment – Integrated Chemical Environment (SARA-ICE) is a probabilistic model which has been developed into;

- a defined approach (DA) for point of departure (PoD) determination
- an extended model tool for flexible application in risk assessment and/or hazard classification


A quick tour:

- Development history
- > Features and model structure of the SARA-ICE tools
- > Evaluation of SARA-ICE at OECD
- > Application using the publicly available user interface

Development Timeline of Skin Allergy Risk Assessment Models

Unilever

Emily N. Reinke " 名 昭, Joe Reynolds ⁶, Nicola Gilmour ⁶, Georgia Reynolds ¹ Judy Strickland ^{a 1}, Dori Germolec ^c, David G. Allen ^{a 2}, Gavin Maxwell ⁶, Nicole C. Kleinstreuer ^c

OECD Defined Approaches (DAs) for Skin Sensitisation (TG 497)

- In 2021, OECD Test Guideline 497 was adopted.
- TG 497 meets regulatory requirements for:
 - DAs that discriminate between sensitizers and non-sensitizers
 - DAs that discriminate strong from weak/moderate sensitizers (i.e., GHS potency categories)

- In 2021, the US and UK began a joint led feasibility study project under OECD for evaluating a defined approach that can provide a point of departure for quantitative risk assessment
- In 2024, the project began drafting an update to OECD TG 497 to incorporate DAs for PoD determination (i.e. SARA-ICE), expected to be released mid-2025.
- In parallel, a self-contained version of the model and user interface have been developed, accessed via NICEATMs website.

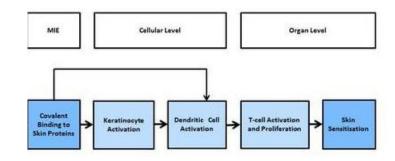
SARA-ICE

The aim of the Unilever and NICEATM collaboration was to create a version of the SARA Model, SARA-ICE, which would be useful to wider industry, a model that could define points of departure (PoD) for use in risk assessment and have functionality for regulatory classification.

Database

The core dataset underpinning the model uses data in the ICE database.

434 chemicals


1,407 in vivo studies 2,575 in vitro studies

Input Assay Types

OECD TG NAM Assays aligned to key events in the skin allergy AOP.

- DPRA, kDPRA (KE1)
- KeratinoSens (KE2)
- U-Sens, hCLAT (KE3)
- Human (HMT/HRIPT) & LLNA studies may also be used.

Model Outputs

SARA-ICE, a Bayesian probabilistic model, gives a continuous measure of sensitiser potency: *ED*₀₁ (1% *sensitising dose in human patch test*).

> A PoD (SARA-ICE DA)

Or

 GHS Classification (SARA-ICE Extended)

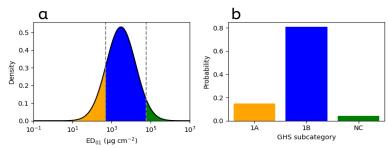
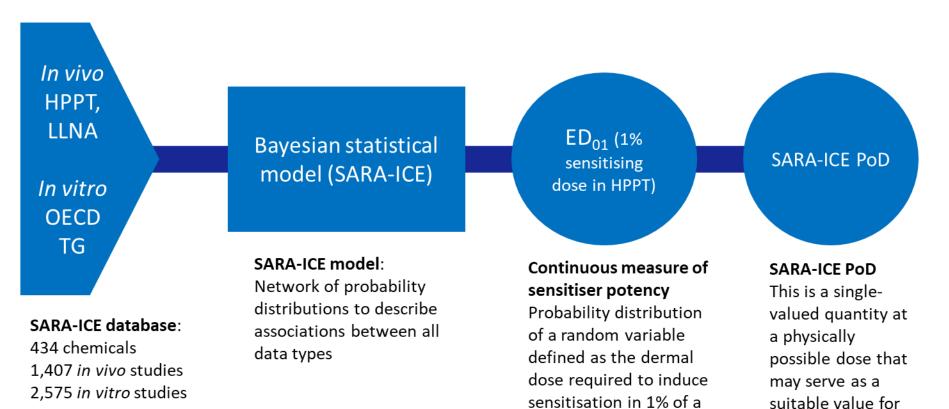


Figure (a) Example estimate of ED₀₁ distribution with overlay of GHS subcategories 1A, 1B and NC defined thresholds, (b) probability of each GHS subcategory from ED₀₁ distribution

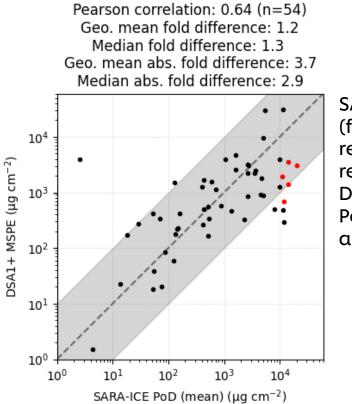


input into

exposure-based risk assessment.

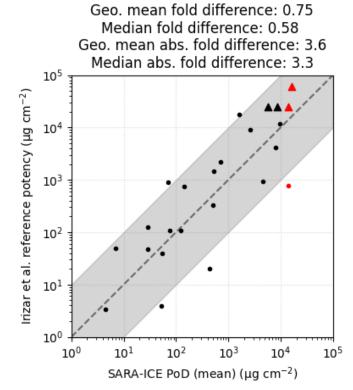
SARA-ICE DA (Proposed OECD TG 497 Version)

Input


HPPT-eligible

population.

Unilever


Evaluation of the SARA-ICE PoD

SARA-ICE vs reference DSA1+

SARA-ICE mean PoDs (from NAM data) relatively unbiased relative to reference DSA1+. PoDs on average around 3-fold away.

SARA-ICE PoDs vs Irizar et al. benchmarks

Pearson correlation: 0.84 (n=24)

SARA-ICE mean PoDs (from NAM data) relatively unbiased relative to Irizar et al. reference potency. PoDs on average around 3.5-fold away.

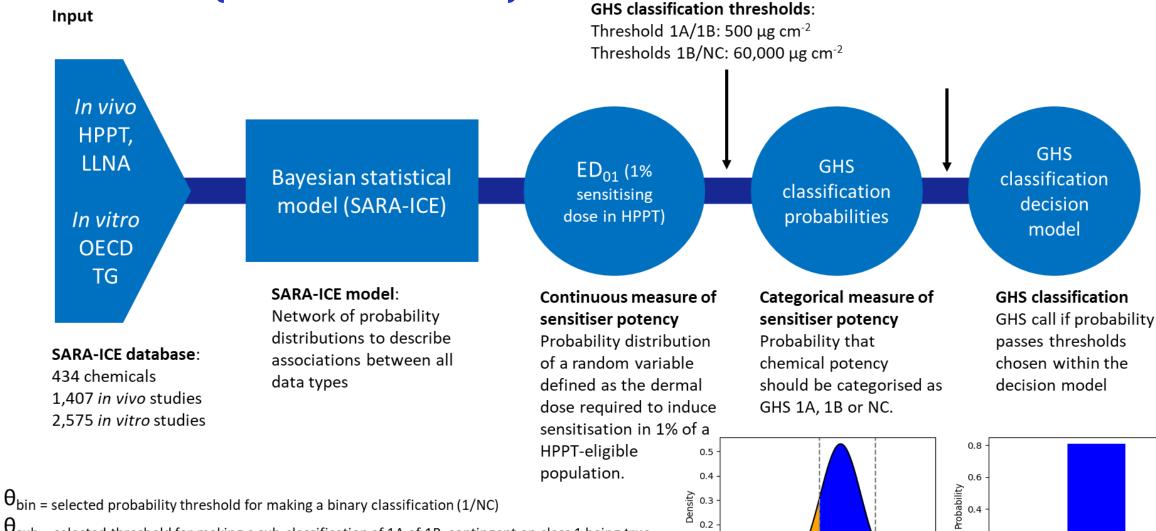
Red points: compounds predicted to be non-sensitising at a hazard probability threshold of 0.77

0.2

0.0

107

1A


1B

GHS subcategory

NC

10⁵

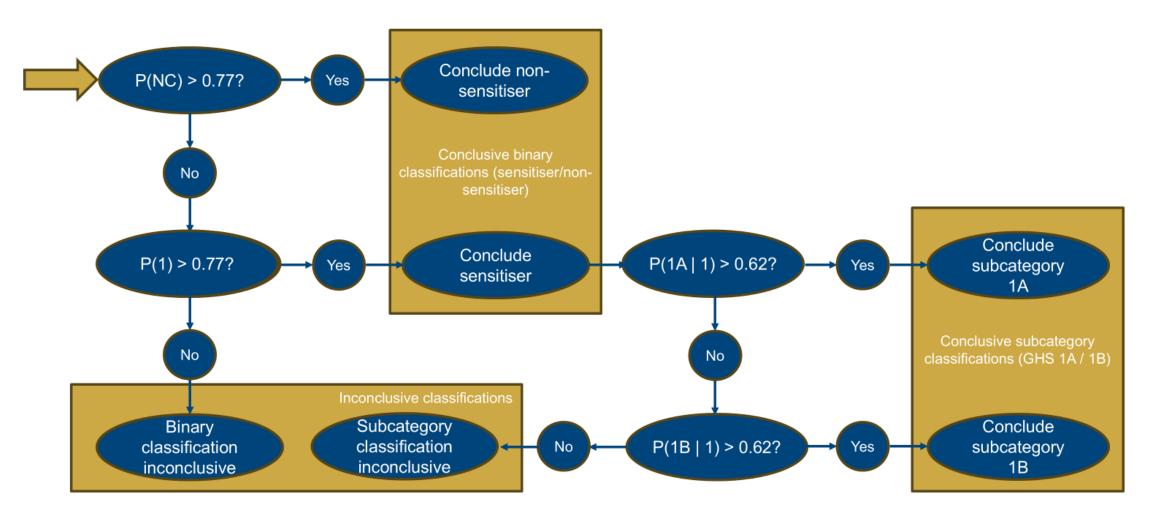
SARA-ICE DA (Extended Version)

0.2

0.1 0.0

 10^{-1}

10¹


10³

 ED_{01} (µg cm⁻²)

 θ_{sub} = selected threshold for making a sub-classification of 1A of 1B, contingent on class 1 being true

Unilever

GHS Classification Decision Model (SARA-ICE Extended)

SARA-ICE NAM vs OECD DASS benchmarks

The SARA-ICE decision model has been evaluated against OECD benchmark classifications.

Binary classifications

Human, $\Theta_{\rm bin} = 0.77$	SARA-ICE 1	SARA-ICE NC	Inconclusive	Total		
Reference 1	37	5	13	55		
Reference NC	0	5	6	11		
Total	37	10	19	66		
Sensitivity: 88%	Sensitivity: 88%					
Specificity: 100%						
Balanced accuracy: 94%						
Inconclusive rate on reference class 1: 24%						
Inconclusive rate on reference class NC: 55%						
LLNA, $\Theta_{\rm bin} = 0.77$	SARA-ICE 1	SARA-ICE NC	Inconclusive	Total		
,						
Reference 1	89	9	37	135		
	89 2	9 19	37 12	135 33		
Reference 1						
Reference 1 Reference NC	2	19	12	33		
Reference 1 Reference NC Total	2	19	12	33		
Reference 1Reference NCTotalSensitivity: 91%	2 91	19	12	33		
Reference 1Reference NCTotalSensitivity: 91%Specificity: 90%	2 91 : 91%	19 28	12	33		

Subcategory classifications

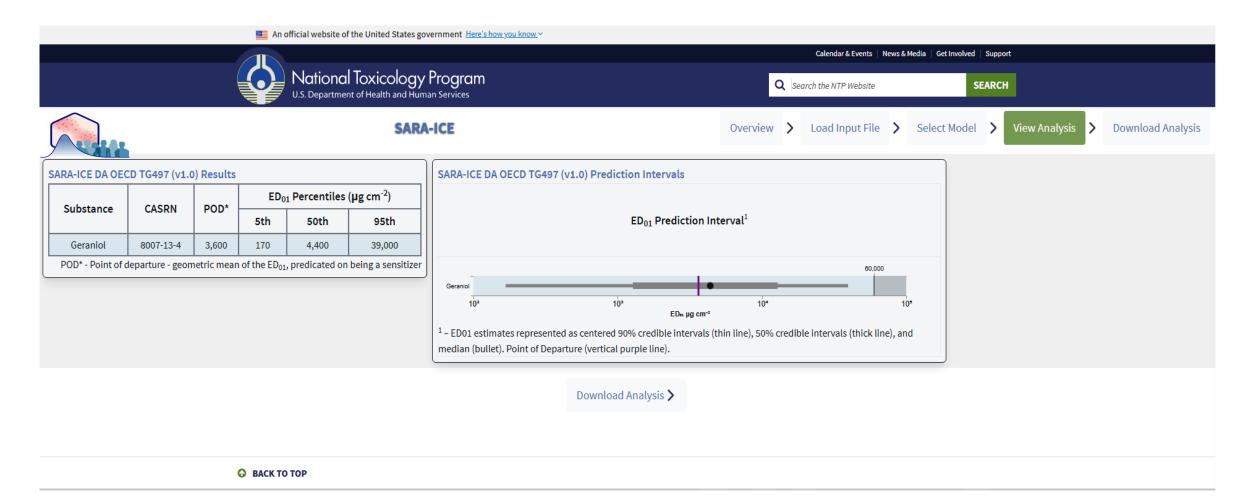
Human $\Omega_{\rm V} = 0.77$ $\Omega_{\rm V} = 0.62$ SADA 1A SADA 1B SADA NG Lumahain Taka								
Human, $\Theta_{\text{bin}} = 0.77$, $\Theta_{\text{sub}} = 0.62$	SARA 1A	SARA 1B	SARA NC	Inconclusive	Total			
Reference 1A	14	2	0	5	21			
Reference 1B	3	7	5	16	31			
Reference NC	Reference NC 0 0 5 6							
Total 17 9 10 27 63								
Sensitivity 1A: 88%, Specificity 1A: 85%, Balanced accuracy 1A: 86%								
Sensitivity 1B: 47%, Specificity 1B: 90%, Balanced accuracy 1B: 69%								
Sensitivity NC: 100% Specificity NC: 84%, Balanced accuracy NC: 92%								
Average balanced accuracy: 82%								
Inconclusive rate on reference class 1A: 24%								
Inconclusive rate on reference class 1B: 52%								
Inconclusive rate on reference class NC: 55%								
LLNA, $\Theta_{\text{bin}} = 0.77$, $\Theta_{\text{sub}} = 0.62$	NA, Obin = 0.77, Osub=0.62 SARA 1A SARA 1B SARA NC Inconclusive T							
Reference 1A 27 3 0 8 38								
Reference 1B 12 22 8 43 85								
Reference NC	Reference NC 0 1 19 13 33							
T - 4 - 1	20							
Total	39	26	27	64	156			
Sensitivity 1A: 90%, Specific					156			
Sensitivity 1A: 90%, Specific	ity 1A: 81%,	Balanced acc	curacy 1A: 85	5%	156			
Sensitivity 1A: 90%, Specific Sensitivity 1B: 52%, Specific	ity 1A: 81%, ty 1B: 92%,	Balanced acc Balanced acc	curacy 1A: 85 uracy 1B: 72	5% %	156			
Sensitivity 1A: 90%, Specific	ity 1A: 81%, ty 1B: 92%, ity NC ⁻ 89%,	Balanced acc Balanced acc	curacy 1A: 85 uracy 1B: 72	5% %	156			
Sensitivity 1A: 90%, Specific Sensitivity 1B: 52%, Specific Sensitivity NC: 95% Specific	ity 1A: 81%, ty 1B: 92%, ity NC ⁻ 89%, 83%	Balanced acc Balanced acc Balanced ac	curacy 1A: 85 uracy 1B: 72	5% %	156			
Sensitivity 1A: 90%, Specific Sensitivity 1B: 52%, Specific Sensitivity NC: 95%, Specific Average balanced accuracy:	ity 1A: 81%, ty 1B: 92%, ity NC: 89%, 83% e class 1A: 2	Balanced acc Balanced acc , Balanced ac 1%	curacy 1A: 85 uracy 1B: 72	5% %	156			

Estimates of the ED₀₁ use NAM data only (1xDPRA, 1xKeratinoSens, 1xh-CLAT, 1xkDPRA). Sensitivity, specificity and accuracy is computed for **conclusive** classifications only.

123

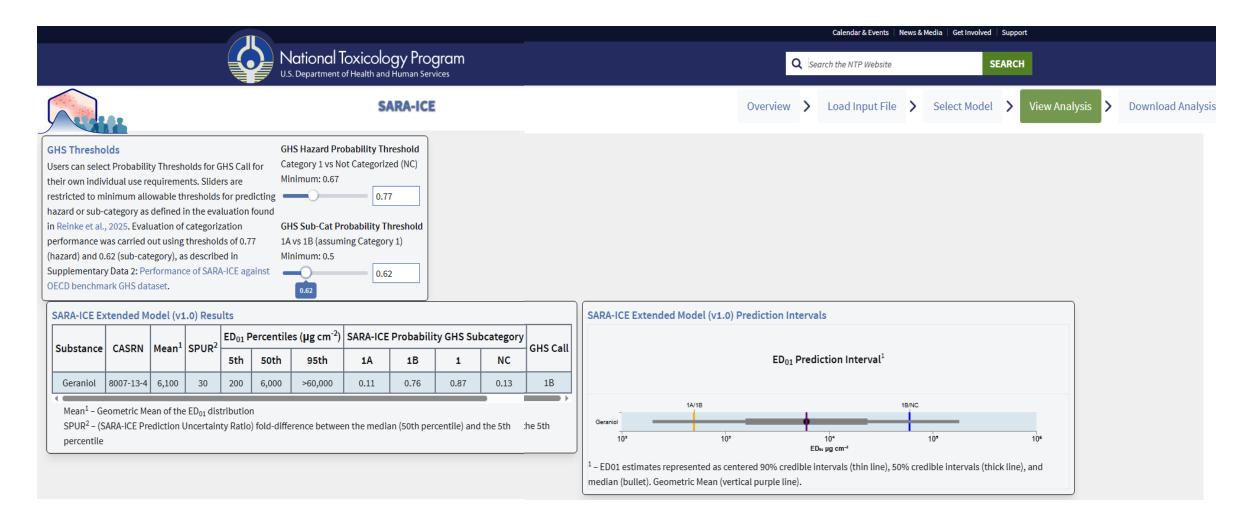
Application of the SARA-ICE Models

Example Case Study: Geraniol


> Using NAM data only, generate a PoD (SARA-ICE DA) and GHS Classification (SARA-ICE Extended)

SARA-ICE Input Data:

Substance Name	CASRN	MW (g (mol)	KeratinoSens	
		(g/mol)	EC1.5 (uM)	
Geraniol	8007-13-4	154.25	209.8	
DPRA			hCLAT	
Depletion Cys (%)	Depletion Lys (%)		CD54, EC200 (ug/ml)	CD86, EC150 (ug/ml)
12.3	2.6		>168	1
DPRA			USENS	
og Kmax (M-1 s- 1)			CD86, EC150 (ug/ml)	
-3.4			53.6	



SARA-ICE DA (Proposed OECD TG 497 Version)

SARA-ICE DA (Extended Version)

NAM PoD Margin of Safety (MoS) in Risk Assessment

Acceptable MoS = a value above which a risk assessor may usually conclude low risk for their safety assessment

Traditionally, values of 100 or above have been used as acceptable MoS.

To convert **acceptable MoS for a human derived NESIL** -> **acceptable MoS for NAM PoDs**, statistically analyse

a) differences between NESILs vs benchmark exposures

b) differences between NESILs and NAM PoD.

 $\log_{10} (\text{Acceptable NAM MoE}) = \beta + \beta_{\text{NAM}} + (\log_{10} (\text{Acceptable NESIL MoE}) - \beta) \sqrt{1 + \frac{\sigma_{\text{NAM}}^2}{\sigma^2}}$

Acceptable MoE NESIL	Acceptable MoE SARA-ICE PoD NAM inputs (geometric mean)
100	100
300	360
1000	1,500

Summary

- SARA-ICE DA fulfils a gap in the current OECD TG 497 on defining a PoD for risk assessment
- SARA-ICE Extended enables a more flexible use of the model, and allows for GHS classifications to be made
- SARA-ICE allows flexible use of a range of OECD TG NAMs (as well as historical LLNA/Human data)
- SARA-ICE WebApp is nearly ready for public release and will be available on the NICEATM website (<u>https://ntp.niehs.nih.gov/whatwestudy/niceatm</u>)
- A margin of safety can be calculated and applied for NAM PoDs to provide equivalent protectiveness against human benchmarks as a traditional NESIL for skin sensitisation risk assessment (Reynolds et al., manuscript in preparation)

SERS - Safety, Environmental & Regulatory Science | Unilever R&D

Thank You

georgia.reynolds@unilever.com

seac.unilever.com

The NICEATM Group